

BRT 多圈绝对值旋转编码器

RS485 产品说明书

深圳布瑞特科技有限公司

www.buruiter.com

目录

(点击对应目录可跳转)

—,	产品优势特性	1
=\	产品型号	2
三、	电气特性	3
四、	产品配套(如有需要请联系业务人员)	4
五、	机械尺寸	4
六、	编码器 RS485 协议(标准 MODBUS-RTU)	9
七、	编码器指示灯说明	21
八、	注意事项	22
九、	我们的服务	23
+、	定制服务	23
+-	·、 图纸和模型下载方式	24
联系	我们	25

一、产品优势特性 ////

- RS485 数字通讯信号输出,数字输出信号既有多圈值、单圈绝对值;
- 采用标准的 ModBus-RTU 通讯规约,支持组态王、Intouch、FIX、synall 等流行软件,能与 AB、西门子、施耐德、GE 等国际著名品牌的设备及系统之间实现数据通信;
- 由精密金属齿轮及多个高精度磁传感器构成的编码器,无须计数、无须电池、断电记忆;量程范围内任何位置都是唯一的,即使有干扰或断电运动,都不会丢失位置信息;
- 多圈分辨率有 1024(10 bit) 、4096(12 bit)、16384(14 bit)、32768 (15bit) 、65536 (16bit) 、131072 (17bit) ,圈数范围广,满足各种应用场景,分别有 16、24、25、32、50、64、99、100、400、1800、5400、10800、21600、十万圈等,可订制上百万圈圈数;单圈精度可达 0.07 度;
- 所有参数均可通过电脑的 RS485 通讯进行设定,可在任意位置设定零点,因此安装编码器时可将设备停留任意位置,无需考虑本编码器的旋转位置、即可固定好连接轴,通电后只要在外部引线处或通过 RS485 通讯进行一次置零操作即可自动修正;
- 特别适用于塔式起重机、矿山起重机、施工升降机、机床、3D 打印机、自动化流水线、工业机器人、印刷机械、包装机械、物流机械、移动广告屏幕滑轨等设备的高度、行程、角度及速度的可靠/精确测量;
- 多种防护等级可选: IP54、IP68、防爆 (经防爆、防水、盐雾、振动等认证) 。

二、产品型号 ////

BRT=布瑞特品牌缩写:

BRT25=外径25mm,4mm轴

BRT27=27*27mm长宽,6mm轴

BRT38=外径39mm,6mm轴

BRT38M=外径39mm,8mm盲孔

BRT38B=外径39mm,8mm抱箍

BRT42=外径42mm,6mm轴

BRT50=外径50mm,8mm轴

BRT58=外径58mm,10mm轴

分辨率:

1024=10bit

4096=12bit

16384=14bit

32768=15bit

16bit =65536

17bit =131072

....

21bit=2097152

RT1=侧出线 AT1=尾出线

(默认长度1~1.2米)

IP54(或不标注):常规型

IP65:防溅水型

IP68:防水防尘(水下1米内可

以使用)

EX:防爆型

BRT38

ROM

1024

R0&A0M=RS485&4~20mA

R0&V10M=RS485&0~10V

D24

RT1

IP68

通讯接□(M=绝对式):

ROM=RS485 (Modbus RTU)

R2M=RS232(Modbus RTU)

R4M=RS422(Modbus RTU)

TOM=TTL(Modbus RTU)

COM=CANbus

C2M=CANopen

SOM=SPI

S1M=SSI R0&V5M=RS485&0~5V

S2M=BISS-C

321VI-DI33 C

A0M=4~20mA

V5M=0~5V

V10M=0~10V

圏数:

1、16、24、32、50、64、99、100、

200、400、600、800、1800、5400、

10800、21600、34891、69782圈(可定制其

他圈数)

D1=单圈(或不标注)

D16=16圈

注1: 光电类型在通信接口前加P,例如光电RS485=PROM

注2: 高速RS485通信接口兼容多摩川款,需在通信接口前加HS,例如高速RS485=HSROM

注3: 模拟量速度款需在型号后备注: 最大转速RPM, 例如: BRT38-A0M1024-RT1-IP68(1000RPM)

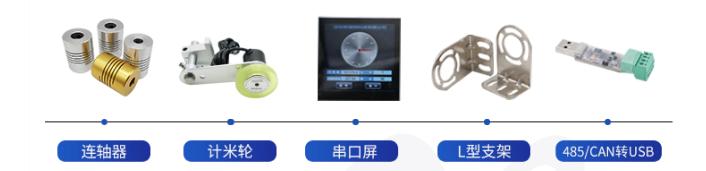
布瑞特型号说明:

1.结构形式: 如BRT25, 表示25mm的外径, 4mm输出轴;

2.通信接口:如ROM,表示电气接口RS485,通信协议为Modbus RTU;

3.分辨率: 表示单圈分辨率, 并与后面的圈数无关; 如10bit, 2的10次方=1024, 表示一圈360°里分1024份, 最小的角度分辨率为360°/1024=0.38°;

4.圈数范围:表示断电记忆的范围,非编码器机械转动的圈数。单圈表示断电记忆仅限于一圈的范围内,多圈表示断电记忆能够记录并恢复多个圈数的位置信息。单圈和多圈,机械转动是可以无限制地进行圈数的;


5.盲孔主要用于提供固定螺纹连接的空间,而抱箍则主要用于固定和连接部件,在实际应用中更推荐抱箍编码器;

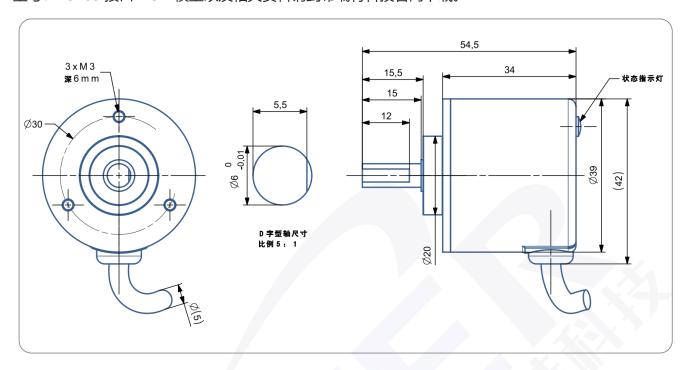
6.部分随机组合的型号可能不在我们的库存中,请提前咨询以确保所选型号有货。

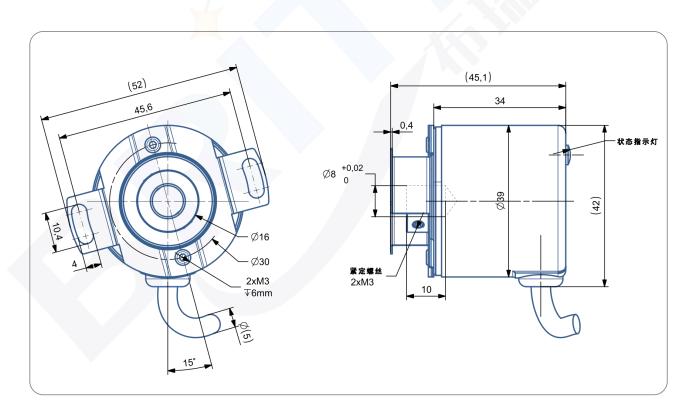
三、电气特性 ////

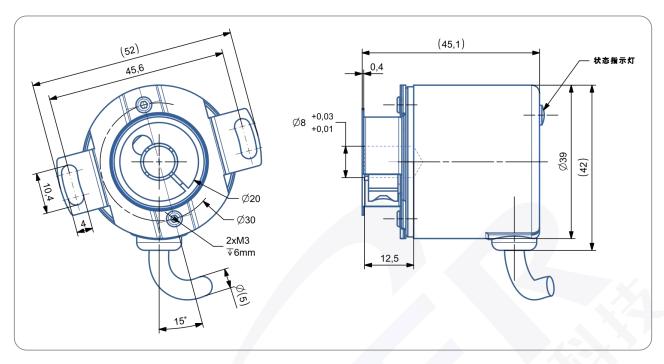
电气参	数						
工作电	压:	5~24V	波特率:	9600~115200 (默认 9600)			
工作电流	流:	100mA	站号、地址:	1-255 (默认 1)			
线性度	:	0.1%	通信协议:	见 10 页			
内核刷	新周期:	50uS	电气寿命:	> 100000 h			
圈数:		16、24、25、 十万圏等(同	32、50、64、99、100、400、1800、5400、10800、21600、				
単巻分辨率:) 、4096(12 bit)、16384(14 bit)、32768(15 bit)、65536 131072(17bit)				
机械参数	数						
外壳/法	兰材质		镀锌钢/铝合金、IP6	8 外壳为不锈铁			
轴材质			不锈钢(6mm 轴、8mm 轴、8mm 盲孔/抱箍、10mm 轴)				
轴承材质			轴承钢				
轴的最大负载			轴向 20 N, 径向 80	N			
最大机械转速			最大 3000RPM				
最大启	动扭矩		0.006Nm				
重量			120 g 及以上 (1-1.2 米屏蔽线)				
环境参数	数						
工作温	度		-40 ~ + 85°C				
储存温	度		-40 ~ + 85 °C				
湿度			98 % (无凝露)				
防护等	级		IP54、IP68、防爆型				
接线方式	t .						
红	电源正极	5~24V	上电前务必注意编码	器标签上的电压值			
黑	地线 (GN	ID)	0V				
黄 ZR (置零, 一般不接)			1、置零功能: 黄线接地(黑线),编码器置零; 2、恢复出厂设置功能:断电后黄线接地(黑线),上电, 保持2分钟后即可复位,复位后分离两条线				
绿	RS485B		TR-				
白	RS485A		TR+				

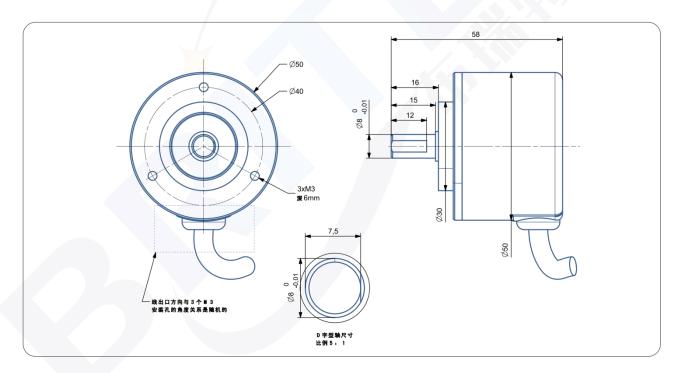
四、产品配套(如有需要请联系业务人员)

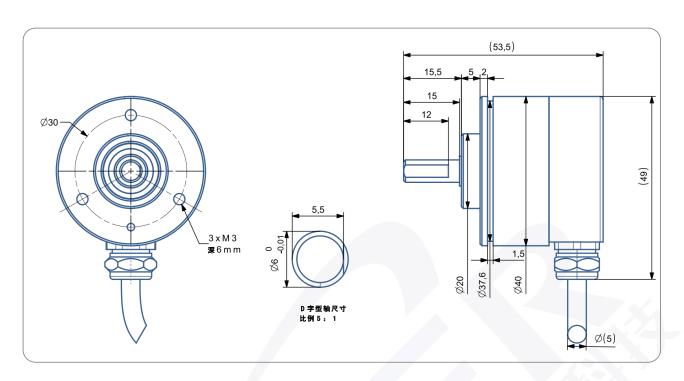
五、机械尺寸////

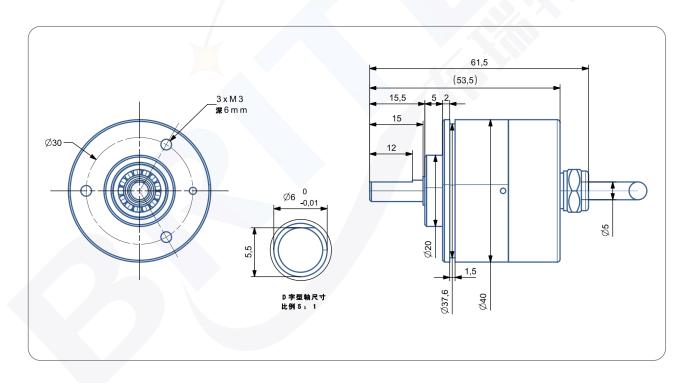

IP54:

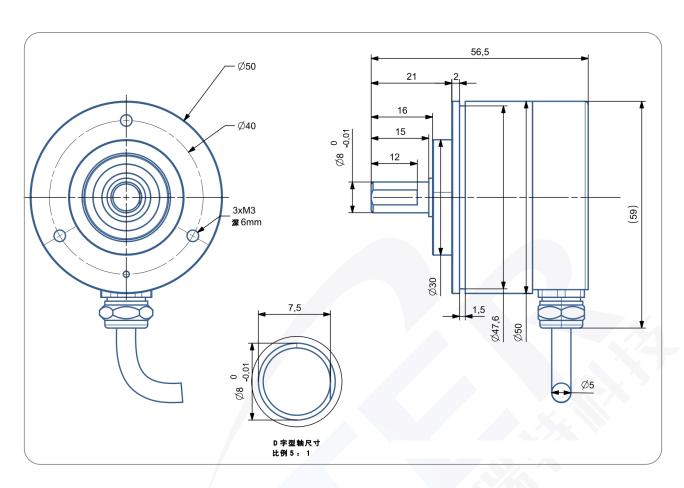

IP68/防爆型:

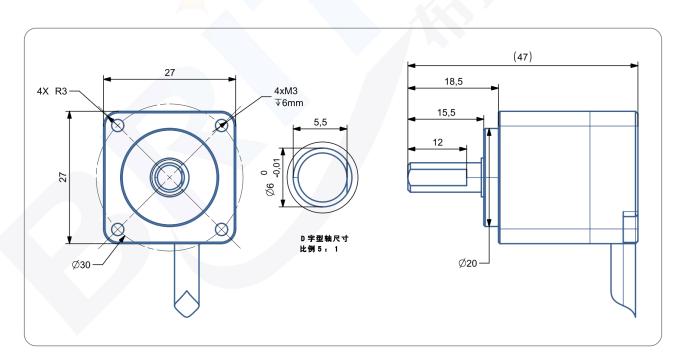

型号: RS485 接口-- 3D 模型以及相关资料请到布瑞特科技官网下载。


尺寸型号图 1: 输出轴 6mm IP54

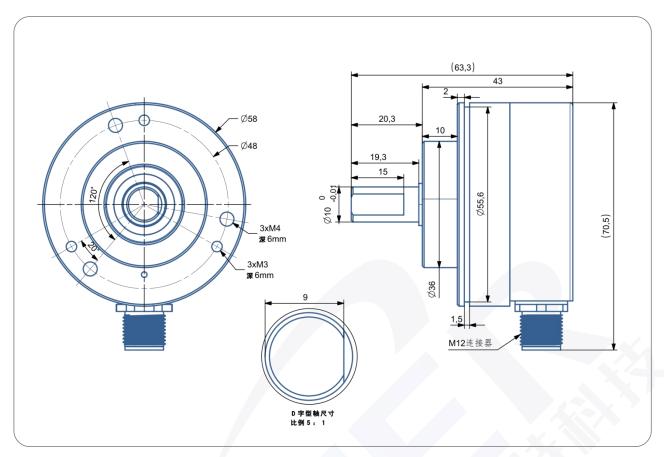

尺寸型号图 2: 输出轴 8mm 盲孔 IP54


尺寸型号图 3: 输出轴 8mm 抱箍 IP54


尺寸型号图 4: 输出轴 8mm IP54


尺寸型号图 5: 输出轴 6mm IP68/防爆

尺寸型号图 6: 输出轴 6mm(尾出) IP68/防爆



尺寸型号图 7: 输出轴 8mm IP68/防爆

尺寸型号图 8: 输出轴 6mm IP68/防爆

(此形状编码器多圈圈数为: 16/24/32/50/100/200/600 圈)

尺寸型号图 9: 输出轴 10mm IP68/防爆

六、编码器 RS485 协议 (标准 MODBUS-RTU) ////

通信协议详述:

本编码器使用 MODBUS-RTU(国标 GB/T19582-2008)通讯协议进行通讯,支持一主站控制多个从站,通过自带的上位机可以配置 255 个从站地址,主站可以是单片机、PLC 或 PC 机等。

6.1. 通信参数

出厂时的串口默认配置,波特率默认为 9600bps,数据位 8,无校验,停止位 1;波特率可配置范围 9600~115200bps,编码器默认通信地址(站号)为 1。

6.2. MODBUS-RTU 帧格式

本编码器支持 MODBUS 的 0x03(读保持寄存器)、0x06(写单个寄存器)、0x10(写多个寄存器)。

6.2.1. 0x03 读保持寄存器

主站发送:

字节 1 2	3	4	5	6	7	8

内容 ADR 0x03 起始寄存 起始寄存器 寄存器数 寄存器数 CRC CR 器高字节 低字节 高字节 低字节 高字节 5

第 1 字节 ADR: 从站地址码 (1~255)

第 2 字节 0x03 : 读寄存器值功能码

第 3、4 字节: 要读的寄存器开始地址

第 5、6 字节: 要读的寄存器数量

第 7、8 字节: 从字节 1 到 6 的 CRC16 校验和

从站回送:

字节	1	2	3	4、5	6、7	M-1、M	M+1	M+2
内容	ADR	0x03	字节总数	寄存器数据1	寄存器 数据 2	 寄存器数 据 M	CRC 高 字节	CRC 低 字节

第 1 字节 ADR: 从站地址码 (2~255)

第 2 字节 0x03 : 返回读功能码

第3字节: 从4到M(包括4及M)的字节总数

第 4 ~ M 字节: 寄存器数据

第 M+1、 M+2 字节: 从字节1 到 M 的 CRC16 校验和

6.2.2. 0x06 写单个寄存器

主站发送:

字节	1	2	3	4	5	6	7	8
内容	ADR	0x06	寄存器高字节	寄存器低字节	寄存器数高 字节	寄存器数 低字节	CRC 高字节	CRC 低字节

当从站接收正确,从站回送:

字节	1	2	3	4	5	6	7	8
т. У	中容 ADD		寄存器高	寄存器	寄存器数	寄存器数	CRC	CRC
内容	ADR	0x06	字节	低字节	高字节	低字节	高字节	低字节

6.2.3. 0x10 写多个寄存器

字节	1	2	3	4	5	6	7
内容	ADR	0x10	起始寄存 器高字节	起始寄存 器低字节	寄存器数 量高字节	寄存器数 量低字节	数据字节总数

字节	8、9	10、	11 N. N		N+1	N+2			N+3			
内容	寄存器 数据 1	寄存数据		寄存数据			CRC CRC 高字节 低字节					
字节	1	2	3		4		5		6		7	8
内容	ADR	0x10	寄存器		寄存 字·		寄存器		寄存器		CRC 高字节	CRC 低字节

当从站接收正确时,从站回送:

当从站接收错误时,从站回送:

字节	1	2	3	4	5
内容	ADR	0x83	异常码	CRC 高字节	CRC 低字节

6.3. 寄存器定义

6.3.1. 编码器寄存器

寄存器地址	描述	取值范围	支持功能 码	备注
0x0000~0x0001	编码器值	0~0xFFFFFFF (0~4294967295)	0x03	
0x0002	编码器圈数值	0~0xFFFF (0~65535)	0x03	
0x0003	编码器单圈值	0~0xFFFF (0~65535)	0x03	
0x0004	编码器地址	1-255	0x06	通信地址
0x0005	波特率	0x0000~0x0004	0x06	0x00: 9600 0x01: 19200 0x02: 38400 0x03: 57600 0x04: 115200

0x0006	编码器模式	0x0000 0x0001 0x0005	0x06	0x00: 查询模式 0x01: 自动回传角度编码值 0x05: 自动回传角速度编码 值
0x0007	自动回传时间	0~65535(毫秒)	0x06	默认:50 毫秒

注意: 一旦设置自动回传时间小于 20 毫秒,编码器再设置其他参数容易失败,谨慎使用!!

0x0008	编码器重置 零点标志位	0x0001	0x06	写入 0x0001, 编码器以当前 位置为零点
0x0009	编码器值 递增方向	0x0000~0x0001	0x06	0x00:顺时针 0x01:逆时针
0x000A	编码器角速度 采 <mark>样时</mark> 间	0~65535(毫秒)	0x06	默认: 100mS
0x000B~0x000C	编码器设置 当前位置值	0~0xFFFFFFF (0~4294967295)	0x10	设置编码器当前位置值
0x000E	编码器设置 中点标志位	0x0001	0x06	写入 0x0001,编码器以当前 位置为中点
0x000F	编码器设置 5 圈标志位	0x0001	0x06	写入 0x0001,编码器以当前 位置为 5 圈值
0x0020~0x0021	编码器角速度 值	-2147483648~214 7483647	0x03	有符号整数

6.4. 编码器详细参数说明

6.4.1. 编码器值

寄存器地址	0x0000~0x0001	西门子 PLC 地址	40001~40002
数据范围	0~X(X 为单圈分辨率*硬件 圈数-1)	单位	-
默认值	-	读/写	仅读(支持功能码 0x03)
生效方式	-	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有多圈编码器

编码器当前多圈角度=编码器值*360/单圈分辨率。例如读取编码器值为 95803, 单圈分辨率为 1024(即 10bit, 2^10=1024),编码器当前多圈角度=95803*360/1024=33680.74°

通信示例:

Tx:01 03 00 00 00 02 (C4 0B) Rx:01 03 04 00 01 76 3B (CC 40)

注:括号内为 CRC 校验位,编码器值返回数据是 00 01 76 3B (十进制: 95803)

6.4.2. 编码器圈数值

寄存器地址	0x0002	西门子PLC地址	40003
数据范围	0~Y (硬件圈数-1)	单位	-
默认值	-	读/写	仅读(支持功能码 0x03)
生效方式	-	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有多圈编码器

通信示例:

Tx:01 03 00 02 00 01 (25 CA) Rx:01 03 02 00 08 (B9 82)

注:括号内为 CRC 校验位,编码器圈数值返回数据是 00 08 (十进制: 8 圈)

6.4.3. 编码器单圈值

寄存器地址	0x0003	西门子 PLC 地址	40004
数据范围	0~N(N 为单圈分辨率-1)	单位	-
默认值	-	读/写	仅读(支持功能码 0x03)
生效方式	-	记忆	掉电记忆
数据类型	无符 号 整数	适用范围	所有多圈编码器

编码器当前单圈角度=编码器单圈值*360/单圈分辨率。例如读取编码器单圈值为634,单圈分辨率为1024(即10bit,2^10=1024),编码器当前角度=634*360/1024=222.89°

通信示例:

Tx:01 03 00 03 00 01 (74 0A) Rx:01 03 02 02 7A (38 C7)

注:括号内为 CRC 校验位,编码器单圈值返回数据是 02 7A (十进制: 634)

6.4.4. 编码器地址

寄存器地址	0x0004	西门子 PLC 地址	40005
数据范围	1~255	单位	-
默认值	1	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

说明:编码器地址/ID/站号

通信示例:

Tx:01 06 00 04 00 02 (49 CA) Rx:01 06 00 04 00 02 (49 CA)

注:括号内为 CRC 校验位,设定地址是 02 (HEX:0x0002)

6.4.5. 波特率

寄存器地址	0x0005	西门子 PLC 地址	40006
	0~4		
	(0: 9600bps		
******	1: 19200bps	₩ / >	
数据范围	2: 38400bps	单位	-
	3: 57600bps		
	4: 115200bps)		
默认值	0 (9600bps)	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

通信示例:

Tx:01 06 00 05 00 02 (18 0A) Rx:01 06 00 05 00 02 (18 0A)

注:括号内为 CRC 校验位,设置的波特率为 38400 bps(0x02)

6.4.6. 编码器模式

寄存器地址	0x0006	西门子 PLC 地址	40007
数据范围	0~5 (0x00: 查询模式 0x01: 自动回传编码器值 0x05: 自动回传编码器角速度值)	单位	-
默认值	0 (查询模式)	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数 无符号整数	适用范围	所有编码器

说明: 编码器工作模式

通信示例:

Tx: 01 06 00 06 00 01 (A8 0B) Rx: 01 06 00 06 00 01 (A8 0B)

注:括号内为 CRC 校验位,设置当前编码器数据模式为自动回传编码器值(默认查询)

6.4.7. 自动回传时间

寄存器地址	0x0007	西门子 PLC 地址	40008
数据范围	0~65535	单位	mS(毫秒)
默认值	50(mS)	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

说明: 编码器自动回传数据的时间周期 (需配合编码器自动回传数据模式使用)

通信示例:

Tx: 01 06 00 07 00 64 (39 E0) Rx: 01 06 00 07 00 64 (39 E0)

注:括号内为 CRC 校验位,设定自动回传时间为 100 毫秒 (HEX:0x0064)

特别注意:一旦设置自动回传时间小于20毫秒,编码器再设置其他参数很容易失败,谨慎使用!!

6.4.8. 编码器重置零点标志位

寄存器地址	0x0008	西门子 PLC 地址	40009
数据范围	0~1	单位	-
默认值	-	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	-
数据类型	无符号整数	适用范围	所有编码器

说明: 此地址写入1后,即设置编码器当前位置为零点,当前编码器值读取为0

通信示例:

Tx:01 06 00 08 00 01 (C9 C8) Rx:01 06 00 08 00 01 (C9 C8)

注:括号内为 CRC 校验位,设置当前编码器值为 0

6.4.9. 编码器值递增方向

寄存器地址	0x0009	西门子 PLC 地址	40010
	0~1		
数据范围	(0: CW 顺时针递增	单位	-
	1:CCW 逆时针递增)		
默认值	1 (CCW 逆时针递增)	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

说明: 编码器值递增方向 (编码器输出轴朝向观察者)

通信示例:

Tx:01 06 00 09 00 00 (59 C8) Rx:01 06 00 09 00 00 (59 C8)

注:括号内为 CRC 校验位,设置当前编码器值顺时针数值增加

6.4.10. 编码器角速度采样时间

寄存器地址	0x000A	西门子 PLC 地址	40011
数据范围	0~65535	単位	mS(毫秒)
默认值	100 (mS)	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

通信示例:

Tx: 01 06 00 0A 03 E8 (A9 76) Rx: 01 06 00 0A 03 E8 (A9 76)

注:括号内为 CRC 校验位,设定自动回传时间为 1000 毫秒 (HEX:0x3E8)

6.4.11. 设置编码器当前值

寄存器地址	0x000B~0x000C	西门子 PLC 地址	40012~40013
数据范围	0~X (X 为单圈分辨率*硬	单位	-
	件圈数-1)		
默认值	-	读/写	仅写(支持功能码 0x10)
生效方式	立即生效	记忆	-
数据类型	无符号整数	适用范围	所有多圈编码器

通信示例:

Tx:01 10 00 0B 00 02 04 00 00 30 39 (66 0E)

Rx:01 10 00 0B 00 02 (30 0A)

注:括号内为 CRC 校验位,设置的位置为 12345 (HEX:0x00003039)

6.4.12. 编码器设置中点标志位

寄存器地址	0x000E	西门子 PLC 地址	40015
数据范围	0~1	单位	-
默认值	_	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	-
数据类型	无符号整数	适用范围	所有编码器

说明:设定当前编码器值为 M(M 为单圈分辨率*硬件分辨率/2)

通信示例:

Tx:01 06 00 0E 00 01 (29 C9) Rx:01 06 00 0E 00 01 (29 C9)

注:括号内为 CRC 校验位,设置编码器当前位置或角度为量程中点

6.4.13. 编码器设置 5 圈标志位

寄存器地址	0x000F	西门子 PLC 地址	40016	
数据范围	0~1	单位	-	
默认值	-	读/写	仅写(支持功能码 0x06)	
生效方式	立即生效	记忆	-	
数据类型	无符号 <mark>整</mark> 数	适用范围	所有多圈编码器	

说明:设定当前编码器值为 Z(Z 为单圈分辨率*5),例如编码器单圈分辨率为 1024,设置之后,当前编码值为 5*1024=5120。

通信示例:

Tx:01 06 00 0F 00 01 (78 09) Rx:01 06 00 0F 00 01 (78 09)

注:括号内为 CRC 校验位,设置当前编码器值为 5 圈值

6.4.14. 编码器角速度值

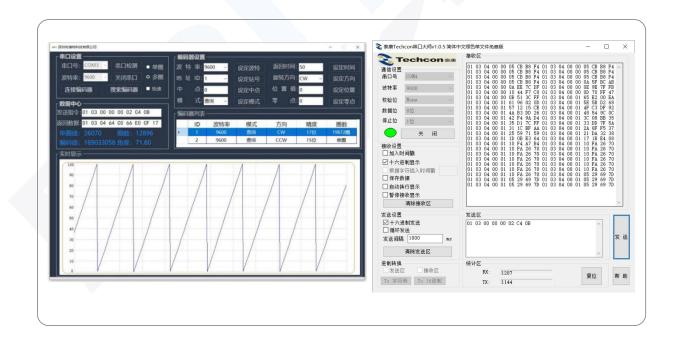
寄存器地址	0x0 <mark>02</mark> 0~0x0021	西门子 PLC 地址	40033~40034
数据范围	-2147483648~2147483647	单位	<u>-</u>
默认值	-	读/写	仅读(支持功能码 0x03)
生效方式	立即生效	记忆	-
数据类型	有符号整数	适用范围	所有编码器

说明:编码器旋转速度 = 编码器角速度值 / 单圈分辨率 / 转速计算时间 (单位:转/分钟)

例如:编码器角速度值回传为 111612, 单圈分辨率为 32768, 转速采样时间为 100ms(0.1/60min)

编码器旋转速度 = 111612/32768/(0.1/60) = 111612*0.0183 = 2042.4996 转/分钟

通信示例:


Tx:01 03 00 20 00 02 (C5 C1)

Rx:01 03 04 00 01 B3 FC (DE 82)

注:括号内为 CRC 校验位,编码器角速度值返回数据是 00 01 B3 FC (十进制: 111612)

6.5. CRC 校验函数代码参考

6.6. 编码器上位机及串口软件测试示例

七、编码器指示灯说明 ////

7.1 默认由 5 个闪灯状态组成, 默认状态: "蓝—>蓝—>蓝—> 茜—> 蓝— > 蓝— > 蓝— > 蓝 间隔 1s 慢闪, 表示编码器供电正常;

7.2 其他工作状态指示

(1) 查询编码器数据状态:绿灯间隔 0.5s 快闪;

(2) 黄线设置零点状态: 橙灯间隔 0.5s 快闪;

(3) 黄线上电复位状态: 紫灯间隔 0.5s 快闪;

(4) 编码器数据自动返回状态: 停 1s 慢闪,间隔 0.5s 快闪,闪烁 5次,定义参照第一条。

(5) 红灯为编码器故障

7.3 当编码的 ID 和波特率更改后,闪灯的颜色会相应变化,状态灯颜色参照表及代表的意义如下。

颜色及其数值定义关系:

颜色	蓝	青	橙	紫	绿	红
数值	0	1	2	3	4	5

(表 1)

RS485/RS232/TTL/RS422 波特率及其数值定义关系:

波特率	9600	19200	38400	57600	115200	
数值	0	1	2	3	4	

(表 2)

- (1) 上电正常工作状态: 停 4s, 间隔 1s 慢闪烁 5 次, 前 4 次闪灯颜色组合成一个四进制数据可以转换成对应编码器 ID 号,最后一次闪灯颜色定义为波特率;
- (2) 例如: 橙—>青—>紫—>橙—>蓝, 查表 1 表 2 可得出对应数字为: 21320, 最后一位 0, 根据上述表格 0 对应波特率为 9600,前 4 位组成 2132 四进制数,转换成十进制 ID:2*4^3+1*4^2 + 3*4^1 + 2*4^0 = 158 (编码器 ID)。

状态灯闪烁定义及示例:

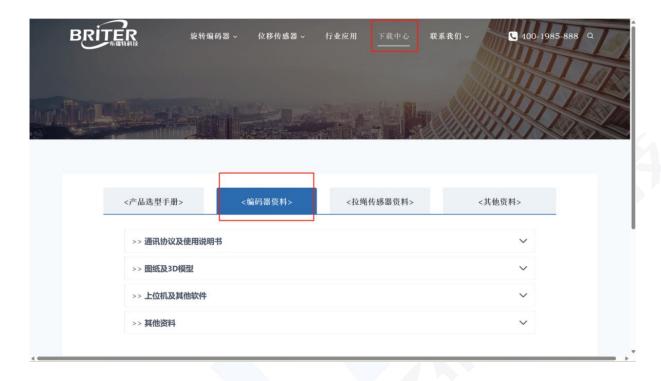
		第1段				第2段	
			编码器 ID				
LED 状态	OFF	ON	ON	ON	ON	ON	OFF
保持时间	4s	1s	1s	1s	1s	1s	4s
状态示例	-	橙	青	蓝	-		
对应数字	-	2	1	0	-		
状态解析	-	2*4^3	2*4^3+ 1*4^2 + 3*4^1 + 2*4^0 = 158				
状态含义	-	编码器 ID				波特率	-

八、注意事项 ////

- 编码器属于精密仪器,请轻拿轻放、小心使用,尤其对编码器轴请勿敲、撞击及硬拽等。
- 编码器与机械连接应选用柔性连接器或弹性支架,应避免刚性联接不同心造成的硬性损坏。
- 编码器防水等级有 IP54、IP68、防爆三种可选,如选用 IP54 编码器,转轴处防护等级为 IP65,应避免轴朝上安装或者浸泡在水中,否则请采用防水护罩等措施; IP68 防水经 48 小时水深一米运作测试,且获得防爆、防水、盐雾、震动等认证。
- 虽然在干扰环境下编码器本身不会丢失圈数,但会对传输过程中的数据造成干扰,所以当系统中有电机或强电磁干扰环境下,对编码器供电要采用隔离电源、外部延长的通讯线最好使用双屏蔽电缆等措施。
- 编码器外壳和屏蔽线外层网线要做到良好接地,防止雷击或高压静电对编码器电路造成损坏!
- 除了上述置零(黄线)允许接地外,编码器其它任何信号线禁止相互短接,通电后还要避免不小心使信号线有碰触,否则可能会造成电路永久性损坏!
- 产品的预测平均失效时间(MTBF)被认为足够长,但可预测的失效率不是零。因此,建议用户当产品可能出现故障时,用户应承担这些产品造成的所有问题,并应将多种安全手段纳入您的产品、系统或设备中,以防止导致严重的系统故障。

九、我们的服务 ////

- 本公司产品在正常使用(除客户不正当使用或因短接引起的电路永久损坏)情况下,保期 2 年,免费提供远程技术指导服务,超出质保期限的产品寄回维修仅收取成本人工费用;
- 可开具专票(13%)、普票(1%),如需开票请联系业务人员;
- 图纸、位机、通信协议等可在布瑞特科技官网下载: www.buruiter.com, 如需绝对值编码器教学视频可在我公司视频号观看。



十、定制服务 ////

十一、图纸和模型下载方式 /////

资料下载地址(说明书(含通讯协议)、尺寸图纸、3d模型、上位机):www.buruiter.com点击链接进入官网下载中心>>编码器资料,如下图:

XX 维 码

深圳布瑞特科技有限公司官网网址:

www.buruiter.com (扫描上方二维码进入官网)

定制服务:

接口定制,尺寸定制,通讯定制,参数定制

技术支持:

400-1985-888

地址:

深圳市 宝安区 西乡街道 银田工业区 B9 栋 3 层