

BRT 单圈绝对值旋转编码器

CAN 总线产品说明书

深圳布瑞特科技有限公司

www.buruiter.com

目 录

(点击对应目录可跳转)

一、	产品优势特性	1
二、	产品型号说明	2
三、	电气特性	3
四、	产品配套	4
五、	机械尺寸	4
六、	编码器单圈 CAN 通信协议	11
七、	编码器指示灯说明	17
八、	注意事项	19
	我们的服务	
+、	定制服务	20
+-	、 图纸和模型下载方式	21
联系	我们	22

一、产品优势特性 ////

- CAN 接口具有实时双向通讯能力,CAN 接口旋转编码器兼容 CAN2.0 电气规范。用户可通过命令设置编码器的 ID 地址、零点、数据发送模式等参数,是目前最为友好的智能旋转编码器;
- 单圈编码器在不掉电情况下可作电子多圈编码器使用(此功能非断电记忆),最高可达百万圈;增加测量速度功能,便于使用者计算;单圈量程范围内任何位置都是唯一的,即使有干扰或断电运动,都不会丢失位置信息;
- 単圏分辨率有 1024(10 bit)、4096(12 bit)、16384(14 bit)、32768(15 bit)、65536 (16bit)、131072 (17bit) ,量程范围内最高可实现 0.0027 度的分辨率,最高可达到 0.07 度精度;
- 所有参数均可通过 CAN 总线通讯进行设定,可在任意位置设定零点,因此安装编码器时可将设备停留任意位置,无需考虑本编码器的旋转位置、即可固定好连接轴,通电后只要在外部引线处或通过 CAN 总线通讯进行一次置零操作即可自动修正;
- 特别适用于塔式起重机、矿山起重机、施工升降机、机床、3D 打印机、自动化流水线、工业机器人、印刷机械、包装机械、物流机械、移动广告屏幕滑轨等设备的高度、行程、角度及速度的可靠/精确测量;
- 多种防水等级可选: IP54、IP68、防爆(经防爆、防水、盐雾、振动等认证)。

二、产品型号 ////

BRT=布瑞特品牌缩写:

BRT25=外径25mm,4mm轴 BRT27=27*27mm长宽,6mm轴 BRT38=外径39mm,6mm轴 BRT38M=外径39mm,8mm盲孔 BRT38B=外径39mm,8mm抱箍 BRT42=外径42mm,6mm轴 BRT50=外径50mm,8mm轴 BRT58=外径58mm,10mm轴

分辨率:

1024=10bit 4096=12bit 16384=14bit 32768=15bit 16bit =65536

IP54(或不标注):常规型 IP65:防溅水型

17bit =131072

RT1=侧出线 IP68:防水防尘(水下1米内可

AT1=尾出线

以使用) EX:防爆型

(默认长度1~1.2米) 21bit=2097152

BRT38

ROM

1024

D24

RT1

IP68

通讯接口(M=绝对式):

ROM=RS485 (Modbus RTU) R2M=RS232(Modbus RTU)

R4M=RS422(Modbus RTU)

SOM=SPI S1M=SSI R0&A0M=RS485&4~20mA

R0&V5M=RS485&0~5V R0&V10M=RS485&0~10V

TOM=TTL(Modbus RTU)

COM=CANbus

C2M=CANopen

S2M=BISS-C A0M=4~20mA

V5M=0~5V V10M=0~10V 圈数:

1、16、24、32、50、64、99、100、 200, 400, 600, 800, 1800, 5400, 10800、21600、34891、69782圈(可定制其

他圈数)

D1=单圈 (或不标注)

D16=16圈

注1: 光电类型在通信接口前加P,例如光电RS485=PROM

注2: 高速RS485通信接口兼容多摩川款,需在通信接口前加HS,例如高速RS485=HSROM

注3: 模拟量速度款需在型号后备注: 最大转速RPM, 例如: BRT38-A0M1024-RT1-IP68(1000RPM)

布瑞特型号说明:

1.结构形式: 如BRT25, 表示25mm的外径, 4mm输出轴;

2.通信接口:如ROM,表示电气接口RS485,通信协议为Modbus RTU;

3.分辨率:表示单圈分辨率,并与后面的圈数无关;如10bit,2的10次方=1024,表示一圈360°里分1024份,最小的 角度分辨率为360°/1024=0.38°;

4.圈数范围:表示断电记忆的范围,非编码器机械转动的圈数。单圈表示断电记忆仅限于一圈的范围内,多圈表示断 电记忆能够记录并恢复多个圈数的位置信息。单圈和多圈,机械转动是可以无限制地进行圈数的;

5.盲孔主要用于提供固定螺纹连接的空间,而抱箍则主要用于固定和连接部件,在实际应用中更推荐抱箍编码器;

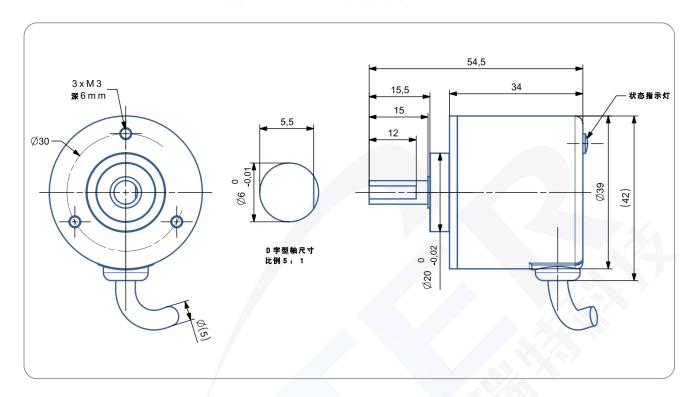
6.部分随机组合的型号可能不在我们的库存中,请提前咨询以确保所选型号有货。

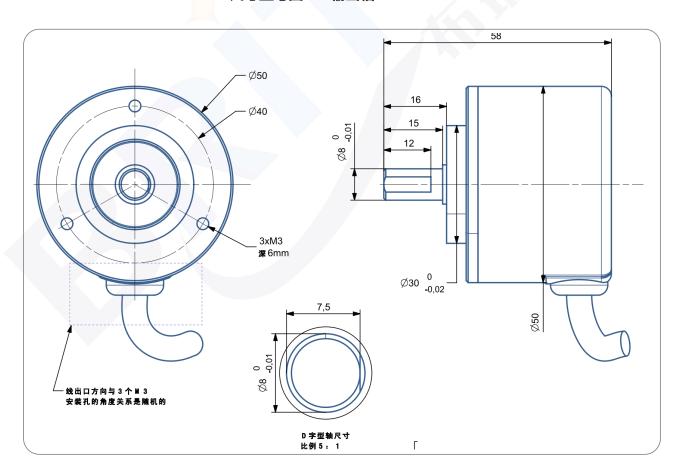
三、电气特性 ////

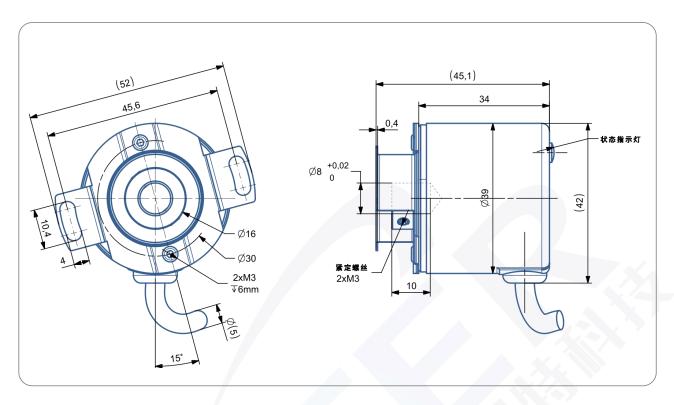
电气参	数					
工作电	,压:	5~24V	波特率:	100K~1M (默认 500K)		
工作电	流:	50mA	站号、地址:	1-255 (默认 1)		
线性度	:	0.1%	通信协议:	见11页		
内核刷	新周期:	50uS	电气寿命:	> 100000 h		
** INT. / \	*I* 	1024(10 bit	t) 、4096(12 bit)、163	84(14 bit)、32768(15 bit)、65536		
单圈分		(16bit) 、	131072 (17bit)			
机械参	数					
外壳/流	法兰材质		镀锌钢/航空铝、IP68	3/防爆款外壳为不锈钢		
轴材质			不锈钢(6mm轴、8m	ım 轴、8mm 盲孔/抱箍、10mm 轴)		
轴承材	质		轴承钢			
轴的最	大负载		轴向 20 N, 径向 80 N			
最大机	械转速		最大 8000RPM			
最大启	动扭矩		0.006Nm			
重量			120 g 及以上 (1-1.2 米屏蔽线)			
环境参	数					
储存温			-40 ~ + 85 °C			
湿度			98 % (无凝露)			
防护等	级		IP54、IP68、防爆型			
接线方	式					
红	电源正极	5~24V	上电前务必注意编码器			
黑	地线 (GN	ID)	0V			
			1、置零功能: 黄线接地 (黑线) , 编码器置零;			
黄 ZR (置零,一般不接)			2、恢复出厂设置功能:断电后黄线接地(黑线),上电,			
	保持 2 分钟后即可复位,复位后分离两条线					
绿	CANH					
白	CANL					

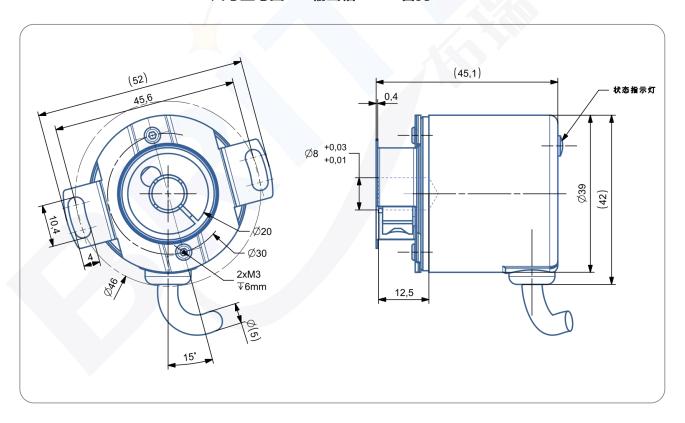
四、产品配套 (如有需要请联系业务人员)

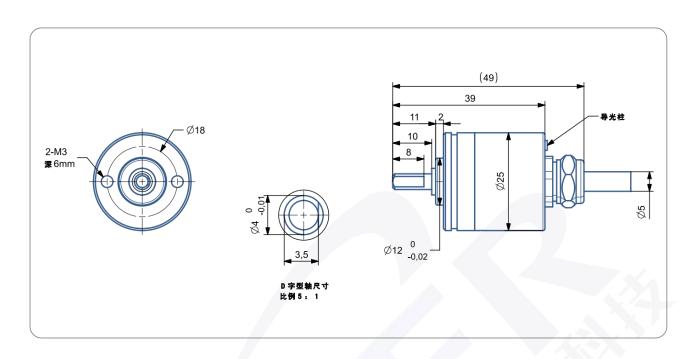
五、机械尺寸////

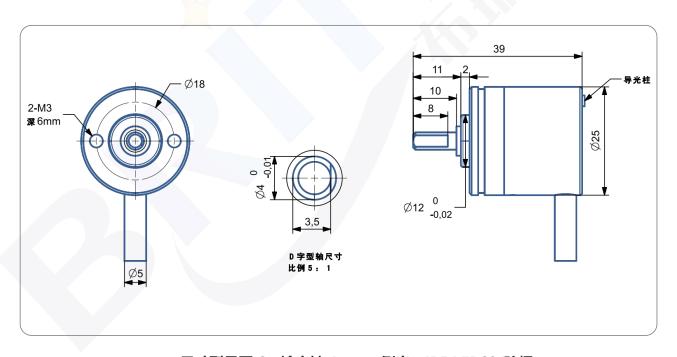

IP54:

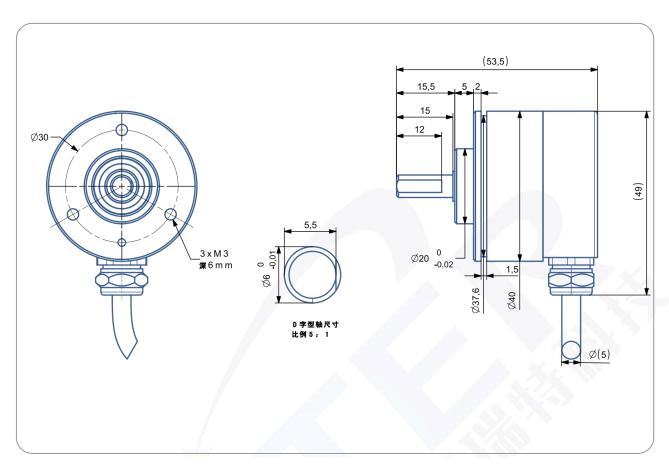

IP68/防爆型:

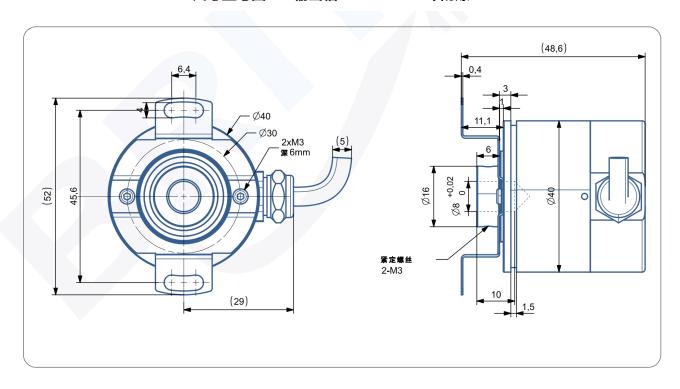

型号: CAN 接口-- 3D 模型以及相关资料请到布瑞特科技官网下载。

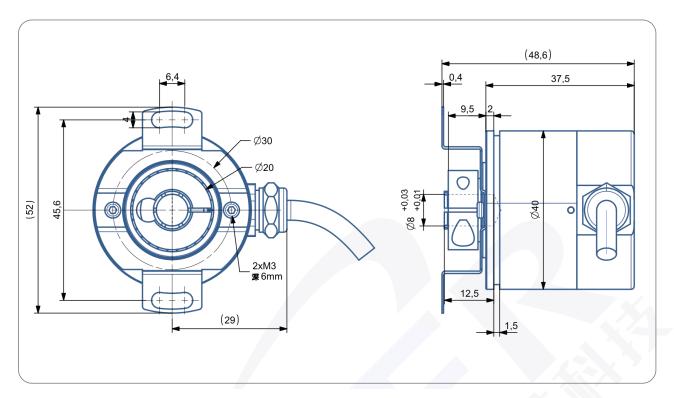

尺寸型号图 1: 输出轴 6mm IP54

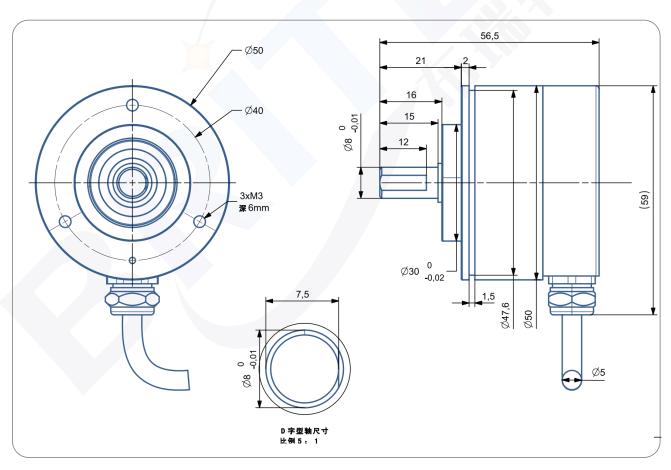

尺寸型号图 2: 输出轴 8mm IP54

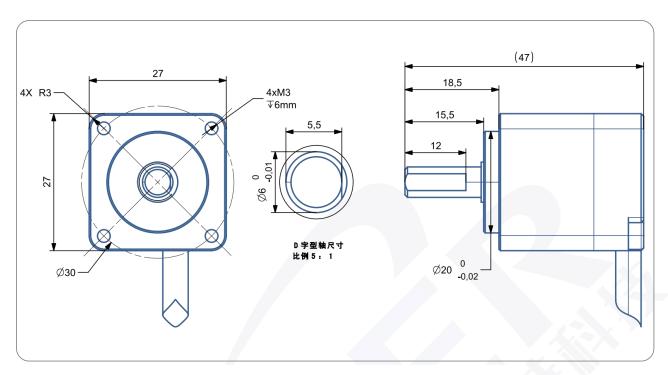

尺寸型号图 3: 输出轴 8mm 盲孔 IP54

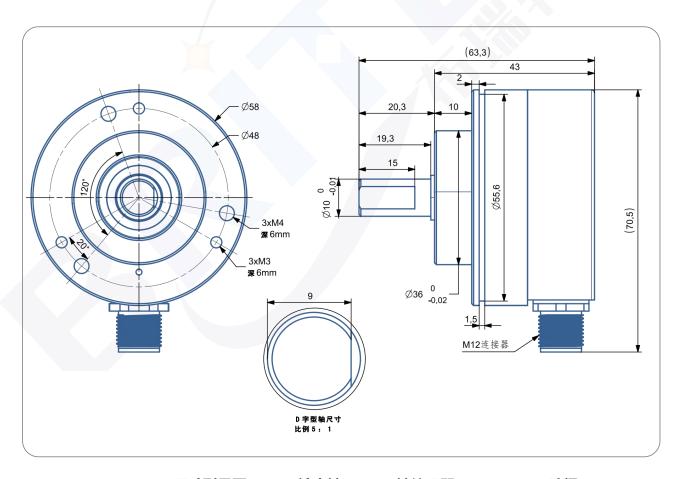

尺寸型号图 4: 输出轴 8mm 抱箍 IP54


尺寸型号图 5: 输出轴 4mm 尾出 IP54/IP68/防爆


尺寸型号图 6: 输出轴 4mm 侧出 IP54/IP68/防爆


尺寸型号图 7: 输出轴 6mm IP68/防爆


尺寸型号图 8: 输出轴 8mm 盲孔 IP68/防爆


尺寸型号图 9: 输出轴 8mm 抱 IP68/防爆

尺寸型号图 10: 输出轴 8mm 轴 IP68/防爆

尺寸型号图 11: 输出轴 6mm 轴 IP68/防爆

尺寸型号图 12: 输出轴 10mm 轴编码器 IP54/IP68/防爆

六、编码器单圈 CAN 通信协议

6.1 CAN 简介

CAN 全称为 Controller Area Network,即控制器局域网,由德国 Bosch 公司最先提出,是国际上应用最广泛的现场总线之一。

6.2 CAN 技术规范

6.2.1 帧类型

在 CAN 总线中, 有四种帧类型: 数据帧、远程帧、错误帧和过载帧。

- (1) 数据帧:数据帧传输应用数据;
- (2) 远程帧:通过发送远程帧可以向网络请求数据,启动其他资源节点传送他们各自的数据,远程帧包含 6 个位域:帧起始、仲裁域、控制域、CRC 域、应答域、帧结尾。仲裁域中的 RTR 位的隐极性表示为远程帧;
- (3) 错误帧: 错误帧能够报告每个节点的出错。由两个不同的域组成,第一个域是不同站提供的错误标志的叠加,第二个域是错误界定符;
- (4) 过载帧:如果节点的接收尚未准备好就会传送过载帧,由两个不同的域组成,第一个域是过载标志,第二个域是过载界定符。

6.2.2 数据帧的结构

数据帧包括: 【帧起始】+【仲裁域】+【控制域】+【数据域】+【CRC 域】+【应答域】+【帧结】

- (1) 帧起始:标志帧的开始,它由单个显性位构成,在总线空闲时发送,在总线上产生同步作用。
- (2) 仲裁域:由 11 位标识符(ID10-ID0)和远程发送请求位(RTR)组成,RTR 位为显性表示该帧为数据帧,隐性表示该帧为远程帧;标识符按由高至低的次序发送,目前 7 位 (ID10-ID4)不能全为显性位。标识符 ID 用来描述数据的含义而不用于通信寻址,CAN 总线的帧是没有寻址功能的。标识符还用于决定报文的优先权,ID 值越低优先权越高,在竞争总线时,优先权高的报文优先发送,优先权低报文退出总线竞争。CAN 总线竞争的算法效率很高,是一种非破坏性竞争。
 - (3) 控制域: 为数据长度码 (DLC3-DLC0), 表示数据域中数据的字节数, 不得超过 8。
- (4) 数据域:由被发送数据组成,数目与控制域中设定的字节数相等,第一个字节的最高位首先被发送。其长度在标准帧中不超过 8 个字节。

- (5) CRC 域:包括 CRC(循环冗余码校验)序列(15 位)和 CRC 界定符(1 个隐性位),用于帧校验。
- (6) 应答域:由应答间隙和应答界定符组成,共两位;发送站发送两个隐性位,接收站在应答间隙中发送显性位。应答界定符必须是隐性位。
 - (7) 帧结束:由7位隐性位组成。

6.2.3. 恢复出厂设置功能

断电后黄线接地 (黑线), 上电, 保持 2 分钟后即可复位, 复位后分离两条线

6.3. CAN 的应用层协议

帧信息设定:

1.选择标准帧,而非扩展帧

2.选择数据帧,而非远程帧 3.数据域长度(不含标识符)

应用层协议:

数据长度	编码器地址	指令FUNC	数据
1字节	1字节	1字节	0~4字节

编码器的 CAN 通讯协议采用一主多从的方式。

6.3.1. 关于标识符

CAN2.0B 规定标准的数据帧有 11 位 (标准帧) 或者 29 位 (扩展帧) 位标识符,本协议将其定义为呼叫的目标地址。数据范围: 0~0xFF 或 0~0x1FFFFFFF。

6.3.2. 关于数据域

主站和从站通过数据域传输数据。关于 8 个字节的数据域内容,本协议定义的格式:

【数据长度】 + 【编码器地址】+ 【指令 FUNC】+ 【数据 DATA】

数据长度: 1 字节, 数据范围 0~8, 包括本身、编码器地址、指令 FUNC、数据 DATA 的字节总

数。(注意:这个数据长度不同于帧信息的数据长度)

编码器地址:编码器的 CAN 节点地址, 1 字节

指令 FUNC: 通讯的功能码, 1 字节


数据 DATA: 指令所带的数据, 0~4 字节

6.3.3. 关于标识符 ID 和编码器地址 (编码器出厂默认 ID 为 1)

当主机呼叫编码器时,标识符表示的目标编码器的节点地址;

当编码器回应主机时,标识符表示的回传编码器的节点地址;

如主机和 1 号编码器通讯

第 12 页

6.4. 应用 CAN 和编码器通信:

6.4.1.打开 CAN 设备

(1) 设置波特率。主机要设为和编码器相同的波特率,编码器出厂默认速率是 500kbps 注: CAN 设备与编码器连接,至少需要加一个 120Ω终端电阻,其他根据实际情况增加第二个。

6.4.2. 帧信息设定

- (1) 支持标准帧,扩展帧;
- (2) 选择数据帧, 而非远程帧;
- (3) 计算数据域长度,包括数据域中的所有内容,最大值 "8"

6.4.3. 数据传输

根据编码器的协议,填写数据域内容。数据域的内容为多字节时,低字节在前。

例如: A、主机向 1 号编码器发送指令: "读取编码器值", 数据域长度 4;

数据域: 0x04 (数据长度) + 0x01 (编码器地址) + 0x01 (指令码) + 0x00 (数据 1)

标识 符 ID	Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]
0X01	0x04	0x01	0x01	0x00	-			

返回的数据:数据域长度 7;

数据域: 0X07 (数据长度) + 0X01 (编码器地址) + 0X01 (指令码) + 0x00012345 (数据)

标识 符 ID	Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]
0X01	0x07	0x01	0x01	0x45	0x23	0x01	0x00	

6.5. 布瑞特编码器 CAN 指令集 V2.01

6.5.1.CAN 协议

- (1) 采用 CAN2.0B 标准帧、扩展帧通信协议。
- (2) 通信速率: 1Mbps、500kbps、250kbps、125kbps、100kbps 可设置。500kbps 为默认通信速率设置。

注意:修改了编码器的通信速率后,主机也应修改为相同的通信速率!

6.5.2.指令结构

AN2.0B 指令码的构成:

[长度 LEN] + [设备 ID] + [指令 FUNC] + [数据 DATA]

- [长度 LEN]: 1 字节,包括[长度 LEN] + [设备 ID] + [指令 FUNC] + [数据 DATA];
- [设备 ID]: 1 字节, 范围 0~255;
- [指令]: 1 字节, 范围 0~255;
- [数据]: 0~4字节; 2字节组成16位数据, 低字节在前; 4字节组成32位数据, 低字节在前。

6.5.3 指令列表 V2.01

CAN 指令	功能描述	示例(编码器地址 ID 默认为 01) ID(标识符)亦为 01。
0x01	读取编码器值(掉电记忆)。 返回数据: 32 位无符号整数 数值范围: 0~N(N为单圈分辨率-1)。 编码器当前角度=编码器值*360/单圈分辨 率。例如读取编码器值为 1000,单圈分辨 率为 1024(即 10bit, 2^10=1024),编码器 当前角度=1000*360/1024=351.5625°	下发: [0x04][0x01][0x01][0x00] 返回: [0x07][0x01][0x01][0x45][0x23][0x01][0x00] 编码器值: 0X00012345 (十进制: 74565)
0x02	设置编码器 ID , 数值范围: 1~255 (8 位无符号整数) 默认节点地址为 1(0x01) 下发数据: 8 位无符号整数。 返回数据: 8 位无符号整数。 0: 设置成功, other: 错误码 设置参数立即生效	下发: [0x04][0x01][0x02][0x08] 返回: [0x04][0x08][0x02][0x00] 设定地址: 0X08 设置成功后从机使用新地址应答
0x22	设置编码器大于 255(0xFF)的 ID, 数值范围: 0-1FFFFFFF (29 位无符号整数) 默认节点地址为 1(0x01) 下发数据: 32 位无符号整数。 返回数据: 32 位无符号整数。 0: 设置成功, other: 错误码 设置参数立即生效	下发: [0x04][0x01][0x22][0x18][0xFF][0xF2][0x25] 返回: [0x04][0x25][0x22][0x00][0x00][0x00][0x00] 设定地址: 0x18FFF225 设置成功后从机使用新地址应答

0x03	设置 CAN 通讯波特率数值范围: 0~4 (8 位无符号整数)下发数据: 8 位无符号整数。返回数据: 8 位无符号整数。0: 设置成功, other: 错误码0x00: 500K (默认); 0x01:1M 0x02: 250K; 0x03:125K 0x04: 100K; 设置参数立即生效	下发: [0x04][0x01][0x03][0x01] 返回: [0x04][0x01][0x03][0x00] 设定波特率: 1M
0x04	设置编码器模式: 0x00: 查询 0xAA: (标准帧)自动返回编码器值 0x02: (标准帧)自动返回角速度值(有符号) 0x03: (标准帧)自动返回编码器虚拟多圈值 0x07: (标准帧)自动返回角速度值(无符号) 0x18: (扩展帧)自动返回编码器值 0x12: (扩展帧)自动返回角速度值(有符号) 0x13: (扩展帧)自动返回编码器虚拟多圈值 0x17: (扩展帧)自动返回编码器虚拟多圈值 0x17: (扩展帧)自动返回角速度值(无符号) 设置参数立即生效	下发: [0x04][0x01][0x04][0xAA] 返回: [0x04][0x01][0x04][0x00] 设定模式: 0xAA(自动返回编码器值) 设定自动模式后编码器位置或角速度会周期性 主动回传。回传周期由编码器自动回传时间决定
0x05	设置编码器自动回传时间(掉电记忆,单位:微秒),数值范围:50~65535(16位无符号整数)设置参数立即生效	下发: [0x05][0x01][0x05][0xE8][0x03] 返回: [0x04][0x01][0x05][0x00] 设定自动回传时间: 0X03E8 (1000 微秒)
注意:	设置太短的返回时间后,通过编码器上位机再记	设置其他参数很容易失败,谨慎使用!
0x06	设置当前位置值为零点 下发数据: 8 位无符号整数。 返回数据: 8 位无符号整数。 0: 设置成功, other: 错误码 设置参数立即生效	下发: [0x04][0x01][0x06][0x00] 返回: [0x04][0x01][0x06][0x00] 设置后编码器当前编码器值为 0
0x07	设置编码器值递增方向: 0x00: 顺时针, 0x01: 逆时针 设置参数立即生效	下发: [0x04][0x01][0x07][0x01] 返回: [0x04][0x01][0x07][0x00] 设定方向: 0x01 (逆时针)
0x08	读取编码器虚拟多圈值(掉电归零)。 返回数据:32 位无符号整数。 数据范围:0~2147483647	下发: [0x04][0x01][0x08][0x00] 返回: [0x07][0x01][0x08][0x45][0x23][0x01][0x00] 编码器值: 0X00012345 (十进制: 74565)

	编码器当前虚拟多圈角度=编码器虚拟多圈值*360/单圈分辨率。例如读取编码器单圈值为 100000,单圈分辨率为10bit(即 2^10=1024)编码器当前角度=100000*360/1024=35156.25°	
0x09	读取编码器虚拟圈数值(掉电归零)。 返回数据:32 位无符号整数。	下发: [0x04][0x01][0x09][0x00] 返回: [0x07][0x01][0x09][0x45][0x23][0x01][0x00] 编码器值: 0X00012345 (十进制: 74565)
0x0A	读取编码器角速度值。 返回数据: 32 位有符号整数。 数值范围: -2147483648~2147483647 编码器旋转速度 = 编码器角速度值 / 单 圈分辨率 / 转速计算时间 (单位: 转/分钟) 例如:编码器角速度值回传为 1000,单圈分 辨率为 32768,转速采样时间为 100ms(0.1/60min) 编码器旋转速度 = 1000/32768/(0.1/60) = 1000*0.0183 = 18.31 转/分钟	下发: [0x04][0x01][0x0A][0x00] 返回: [0x07][0x01][0x0A][0x45][0x23][0x01][0x00] 编码器值: 0X00012345 (十进制: 74565)
0x0B	设置编码器角速度采样时间(掉电记忆,单位:毫秒) 数值范围:0~65535 (16 位无符号整数) 设置参数立即生效	下发: [0x05][0x01][0x0B][0x03][0xE8] 返回: [0x04][0x01][0x0B][0x00] 设置角速度采样时间: 0X03E8 (1000 毫秒)
0x0C	设置编码器中点 下发数据: 8 位无符号整数。 返回数据: 8 位无符号整数。 0: 设置成功, other: 错误码 设置参数立即生效	下发: [0x04][0x01][0x0C][0x01] 返回: [0x04][0x01][0x0C][0x00] 设定当前编码器值为 M(M 为单圈分辨率/2), 设定后, 计算当前角度为 180°

设置编码器当前位置值 (掉电归零)

数值范围: 0~N (N 为分辨率-1)

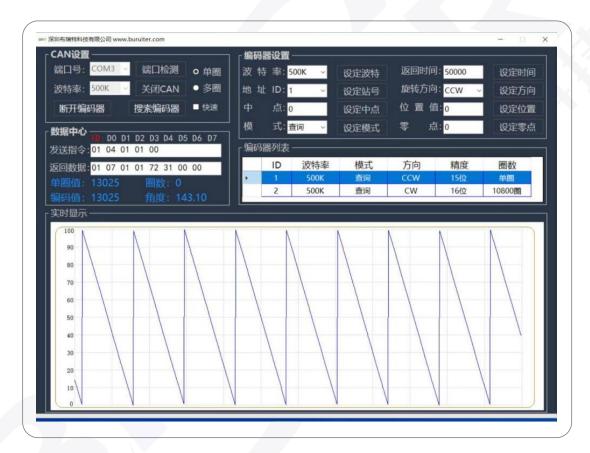
下发数据: 32 位无符号整数。

返回数据: 8 位无符号整数。

0:设置成功, other:错误码

设置参数立即生效

0x0D


下发:

[0x07][0x01][0x0D][0x00][0x01][0x23][0x45]

返回: [0x04][0x01][0x0D][0x00]

设定编码器值: 0X00012345 (十进制: 74565)

6.6. 编码器 CAN 上位机示例

七、编码器指示灯说明 ////

7.1 默认由 5 个闪灯状态组成,默认状态:"蓝—>蓝—>蓝—> 黄—> 蓝"间隔 1s 慢闪,表示编码器供电正常;

7.2 其他工作状态指示

- (1) 查询编码器数据状态:绿灯间隔 0.5s 快闪;
- (2) 黄线设置零点状态: 橙灯间隔 0.5s 快闪;
- (3) 黄线上电复位状态: 紫灯间隔 0.5s 快闪;
- (4) 编码器数据自动返回状态: 停 1s 慢闪,间隔 0.5s 快闪,闪烁 5 次,定义参照第一条。
- (5) 红灯为编码器故障
- 7.3 当编码的 ID 和波特率更改后,闪灯的颜色会相应变化,状态灯颜色参照表及代表的意义如下。

颜色及其数值定义关系:

颜色	蓝	青	橙	紫	绿	红
数值	0	1	2	3	4	5

(表1)

CANbus 波特率及其数值定义关系:

波特率	500K	1M 250K		125K	100K
数值	0	1	2	3	4

(表 2)

- (1) 上电正常工作状态: 停 4s, 间隔 1s 慢闪烁 5 次, 前 4 次闪灯颜色组合成一个四进制数据可以转换成对应编码器 ID 号, 最后一次闪灯颜色定义为波特率;
- (2) 例如: 橙—>青—>紫—>橙—>蓝, 查表 1 表 2 可得出对应数字为: 21320, 最后一位 0, 根据上述表格 0 对应波特率为 500K,前 4 位组成 2132 四进制数,转换成十进制 ID: 2*4^3+1*4^2+3*4^1+2*4^0 = 158 (编码器 ID)。

状态灯闪烁定义及示例:

			第1	第2段			
			编码	波特率			
LED 状态	OFF	ON	ON	ON	ON	ON	OFF

保持时间	4s	1s	1s	1s	1s	1s	4s
状态示例	-	橙	青	紫	橙	蓝	-
对应数字	-	2	1	3	2	0	-
状态解析	-	2*4^3	+ 1*4^2 + 3*4	= 158	波特率为 500K	-	
状态含义	-		编码	波特率	-		

八、注意事项 ////

- 编码器属于精密仪器,请轻拿轻放、小心使用,尤其对编码器轴请勿敲、撞击及硬拽等。
- 编码器与机械连接应选用柔性连接器或弹性支架,应避免刚性联接不同心造成的硬性损坏。
- 编码器防水等级有 IP54、IP68、防爆三种可选,如选用 IP54 编码器,转轴处防护等级为 IP65, 应避免轴朝上安装或者浸泡在水中,否则请采用防水护罩等措施;IP68 防水编码器经连续多月水 深一米运作测试,且获得防爆、防水、盐雾、震动等认证。
- 虽然在干扰环境下编码器本身不会丢失圈数,但会对传输过程中的数据造成干扰,所以当系统中有电机或强电磁干扰环境下,对编码器供电要采用隔离电源、外部延长的通讯线最好使用双屏蔽电缆等措施。
- 编码器外壳和屏蔽线外层网线要做到良好接地,防止雷击或高压静电对编码器电路造成损坏!
- 除了上述置零(黄线)允许接地外,编码器其它任何信号线禁止相互短接,通电后还要避免不小心使信号线有碰触,否则可能会造成电路永久性损坏!
- 产品的预测平均失效时间(MTBF)被认为足够长,但可预测的失效率不是零。因此,建议用户当产品可能出现故障时,用户应承担这些产品造成的所有问题,并应将多种安全手段纳入您的产品、系统或设备中,以防止导致严重的系统故障。

九、我们的服务 ////

- 本公司产品在正常使用(除客户不正当使用或因短接引起的电路永久损坏)情况下,保期2年, 免费提供远程技术指导服务,超出质保期限的产品寄回维修仅收取成本人工费用;
- 可开具专票(13%)、普票(1%),如需开票请联系业务人员;
- 图纸、位机、通信协议等可在布瑞特科技官网下载: www.buruiter.com, 如需绝对值编码器教学 视频可在我公司视频号观看。

布瑞特编码器(bilibili号)

布瑞特科技(抖音号)

布瑞特科技(视频号)

十、定制服务 ////

十一、图纸和模型下载方式

资料下载地址(说明书(含通讯协议)、尺寸图纸、3d 模型、上位机): www.buruiter.com

点击链接进入官网下载中心>>编码器资料,如下图:

BRITER	旋转编码器 > 位移传感器 >	行业应用 下载中心 联	系我们 > 【 400-	1985-888 Q
11111111				
<产品选型手册>	<编码器资料>	<拉绳传感器资料>	<其他资料>	
>> 通讯协议及使用说明书		~		
>> 圍纸及3D模型			~	
>> 上位机及其他软件			~	
>> 其他资料			~	
1				

官网二维码

深圳布瑞特科技有限公司官网网址:

www.buruiter.com (扫描上方二维码进入官网)

定制服务:

接口定制,尺寸定制,通讯定制,参数定制

技术支持:

400-1985-888

地址:

深圳市 宝安区 西乡街道 银田工业区 B9 栋 3 层