

BRT多圈绝对值旋转编码器

模拟量&数字量双输出 产品说明书

深圳布瑞特科技有限公司

www.buruiter.com

目 录

(点击对应目录可跳转)

一、	规格参数	1
_,	型号说明	2
三、	接线说明	3
四、	功能线设置方法	5
五、	输出信号示意图	5
六、	产品配套(如有需要请联系业务人员)	6
七、	机械尺寸	6
八、	通信协议	12
九、	编码器指示灯说明	24
+、	安全要点	25
+	、 正确使用方法	25
+=、	、 我们的服务	26
十三、	、 定制服务	26
十四、	、 图纸和模型下载方式	27
联系	我们	28

一、规格参数

电器参数

输出口 1: RS485 (ModBus RTU)

通讯接口 输出口 2: 模拟量电流 4-20mA 或 电压 0-10V 或 电压 0-5V;

圈数 单圈、多圈 16、24、25、32、50、64、100、200、400、1800、5400、10800、21600 圈 (可定制)

单圈分辨率 10bit、12bit、13bit、14bit、15bit、16bit

工作电压 12~24V 线性度 0.1%

内核刷新周期 50uS 电气寿命 > 100000 h

工作电流 100mA

机械参数

外形尺寸 Φ39mm-6mm 轴、Φ39mm-8mm 盲孔、Φ39mm-8mm 抱箍、Φ50mm-8mm 轴、Φ58mm-10mm 轴

外壳/法兰材质 镀锌钢/航空铝、IP68 为不锈钢材质 最大机械转速 3000 转

轴材质 不锈钢轴 (可定制轴尺寸) 最大启动扭矩 0.006Nm

轴的最大负载 轴向 20 N,径向 80 N

环境参数

工作温度 -40 ~ + 85 ℃ 湿度 湿度 98 %(无凝露)

储存温度 -40 ~ + 85 ℃ 防护等级 IP54、IP68、防爆型

接线定义

接口类型	红线	黑线	棕线	灰线	黄线	橙线	绿线	白线
RS485&4-20mA	12-24V	GND	/	4-20mA	SETL/复位	SETH/方向	485B	485A
RS485&0-5V	12-24V	GND	0-5V	1	SETL/复位	SETH/方向	485B	485A
RS485&0-10V	12-24V	GND	0-10V	/	SETL/复位	SETH/方向	485B	485A

扫码查看通信协议

二、 型号说明 🎹

BRT=布瑞特品牌缩写: BRT25=外径25mm,4mm轴 BRT27=27*27mm长宽,6mm轴 BRT38=外径39mm,6mm轴 BRT38M=外径39mm,8mm盲孔 BRT38B=外径39mm,8mm抱箍 BRT42=外径42mm,6mm轴 BRT50=外径50mm,8mm轴

BRT58=外径58mm,10mm轴

分辨率: 1024=10bit 4096=12bit 16384=14bit 32768=15bit 16bit =65536 17bit =131072

21bit=2097152

RT1=侧出线 AT1=尾出线

(默认长度1~1.2米)

IP54(或不标注):常规型 IP65:防溅水型 IP68:防水防尘(水下1米内可 以使用)

BRT38

ROM

1024

D24

RT1

EX:防爆型

IP68

通讯接口(M=绝对式):

ROM=RS485 (Modbus RTU) R2M=RS232(Modbus RTU) R4M=RS422(Modbus RTU)

TOM=TTL(Modbus RTU) COM=CANbus

C2M=CANopen

SOM=SP

R0&A0M=RS485&4~20mA S1M=SSI S2M=BISS-C

R0&V5M=RS485&0~5V R0&V10M=RS485&0~10V

A0M=4~20mA

V5M=0~5V

V10M=0~10V

圈数:

1, 16, 24, 32, 50, 64, 99, 100, 200, 400, 600, 800, 1800, 5400,

10800、21600、34891、69782圈(可定制其

他圈数)

D1=单圈(或不标注)

D16=16圈

注1: 光电类型在通信接口前加P,例如光电RS485=PROM

注2: 高速RS485通信接口兼容多摩川款,需在通信接口前加HS,例如高速RS485=HSROM

注3: 模拟量速度款需在型号后备注: 最大转速RPM, 例如: BRT38-A0M1024-RT1-IP68(1000RPM)

布瑞特型号说明:

1.结构形式: 如BRT25, 表示25mm的外径, 4mm输出轴;

2.通信接口:如ROM,表示电气接口RS485,通信协议为Modbus RTU;

3.分辨率:表示单圈分辨率,并与后面的圈数无关;如10bit,2的10次方=1024,表示一圈360°里分1024份,最小的 角度分辨率为360°/1024=0.38°;

4.圈数范围:表示断电记忆的范围,非编码器机械转动的圈数。单圈表示断电记忆仅限于一圈的范围内,多圈表示断 电记忆能够记录并恢复多个圈数的位置信息。单圈和多圈,机械转动是可以无限制地进行圈数的;

5.盲孔主要用于提供固定螺纹连接的空间,而抱箍则主要用于固定和连接部件,在实际应用中更推荐抱箍编码器;

6.部分随机组合的型号可能不在我们的库存中,请提前咨询以确保所选型号有货。

三、 接线说明 ///

RS485&4-20mA 接线示意:

红	电源正极 12V~24V	上电前务必注意编码器标签上的电压值
黑	地线 (GND)	-
白	485A	-
绿	485B	-
灰	4-20mA 正	-
棕 (选接)	4-20mA 负	1. 在三线配置中,棕色线悬空不接。 2. 在四线配置中,这条线路需要连接到 4-20mA 负 (即信号负极)。
橙	功能线-最大值/方向	1、预设线,出厂已设置,无需再设置。2、用于重新调整最大值/方向向设置。2、正常的工作时,保持橙色电线悬空并断开,包裹及绝缘,以防误碰低电平导致数据异常。
黄	功能线-最小值/复位	1、 <mark>预设线,出厂已设置,无需再设置。</mark> 2、用于重新调整最小值/复位设置。 2、正常的工作时,保持黄色电线悬空并断开,包裹及绝缘,以防误碰低电平导致数据异常。

如何计算角度?

4~20mA 旋转角度计算公式为:角度=硬件圈数*360* (电流-4) /16 (单位:°)

例:如果使用 24 圈 4~20mA 编码器,电流为 12mA,则角度=24*360 (12-4) /16=4320°

0~5V **旋转角度**计算公式为:角度=硬件圈数*360*电压/5 (单位:°)

例: 如果使用 24 圈 0~5V 编码器, 电压为 2.5V,则角度=24*360*2.5/5=4320°

0~10V **旋转角度**计算公式为:角度=硬件圈数*360*电压/10 (单位:°)

例:如果使用 24 圈 0~10V 编码器,电压为 2.5V,则角度==24*360*2.5/10=2160°

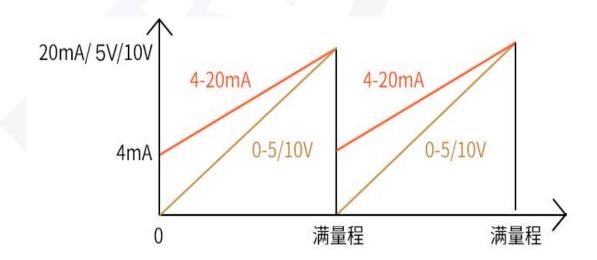
RS485&0-10V 接线示意:

红	电源正极 12V~24V	上电前务必注意编码器标签上的电压值				
黑	地线 (GND)	-				
白	485A	-				
绿	485B	-				
灰 (选接)	0-5V 负	1. 在三线配置中,灰色线悬空不接。 2. 在四线配置中,这条线路需要连接到 0-5V 负(即信 号负极)。				
棕	0-5V 正	-				
橙	功能线-最大值/方向	 预设线,出厂已设置,无需再设置。 用于重新调整最大值/方向向设置。 正常的工作时,保持橙色电线悬空并断开,包裹及绝缘,以防误碰低电平导致数据异常。 				
黄	功能线-最小值/复位	 预设线,出厂已设置,无需再设置。 用于重新调整最小值/复位设置。 正常的工作时,保持黄色电线悬空并断开,包裹及绝缘,以防误碰低电平导致数据异常。 				

RS485&0-5V 接线示意:

红	电源正极 12V~24V	上电前务必注意编码器标签上的电压值		
黑	地线 (GND)	-		
白	485A	-		
绿	485B	-		
灰 (选接)	0-5V 负	1. 在三线配置中,灰色线悬空不接。 2. 在四线配置中,这条线路需要连接到 0-5V 负(即信号负极)。		
棕	0-5V 正	-		
橙	功能线-最大值/方向	4. 预设线,出厂已设置,无需再设置。5. 用于重新调整最大值/方向向设置。6. 正常的工作时,保持橙色电线悬空并断开,包裹及绝缘,以防误碰低电平导致数据异常。		
黄	功能线-最小值/复位	4. 预设线,出厂已设置,无需再设置。5. 用于重新调整最小值/复位设置。6. 正常的工作时,保持黄色电线悬空并断开,包裹及绝缘,以防误碰低电平导致数据异常。		

四、 功能线设置方法 ////


(注意: 出厂编码器已设置基本参数, 无特殊情况您可以不用再设置, 相关设置线直接悬空处理)

- 1.设置最小值:编码器上电状态下黄线短时间 (100ms 以上)接触黑线(0V)可设置编码器当前为模拟 量最小值;
- 2.设置最大值:编码器上电状态下橙线短时间 (100ms 以上)接触黑线(0V)可设置编码器当前为模拟 量最大值;

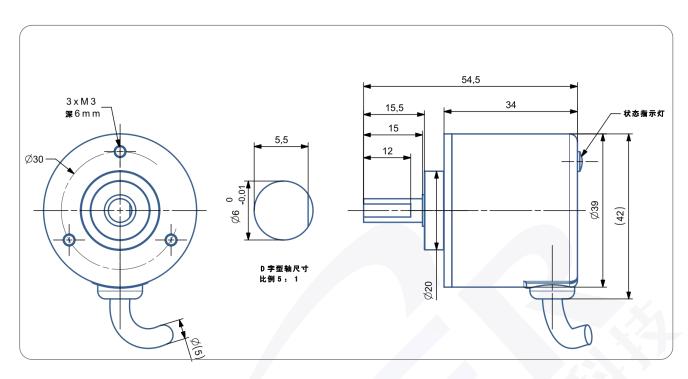
注意:不要在同一点同时置最大最小值。按照递增的方向,先设置最小值,再设置最大值。 (不按照这个设置,编码器的数据可能乱)

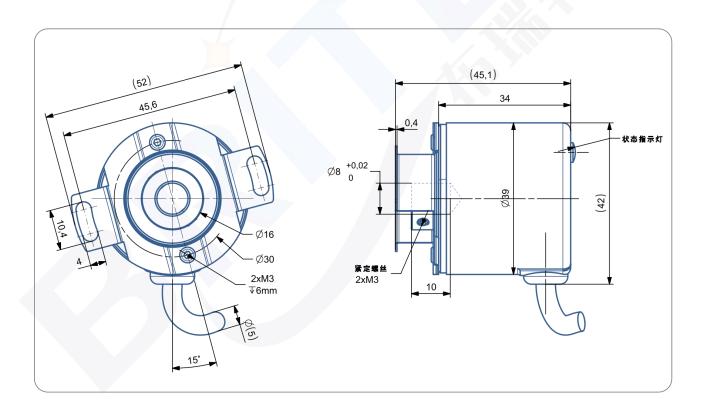
- 3.设置中点值:编码器上电状态下,黄线和橙线短时间(100ms以上)同时接触黑线(0V)可设置编码器当前位置所对应的模拟量输出为中值(如 4~20mA编码器设置为12mA,0-5V编码器设置为2.5V,0-10V编码器设置为5V);
- 4.复位编码器:编码器断电状态下黄线接黑线(OV),然后上电保持2分钟(110~130S)可复位编码器;
- 5.设置方向:编码器断电状态下橙线接黑线(OV),然后上电保持2分钟(110~130S)可切换方向。

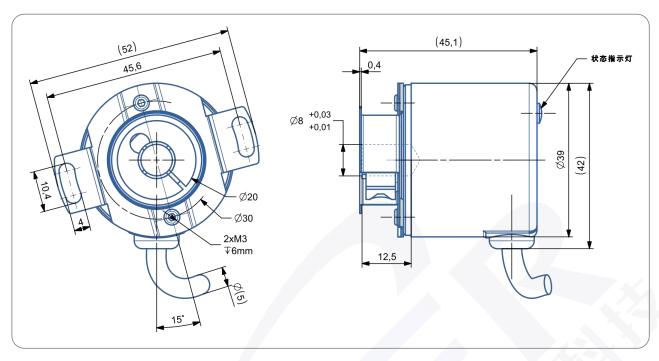
五、输出信号示意图 ////

六、产品配套(如有需要请联系业务人员)

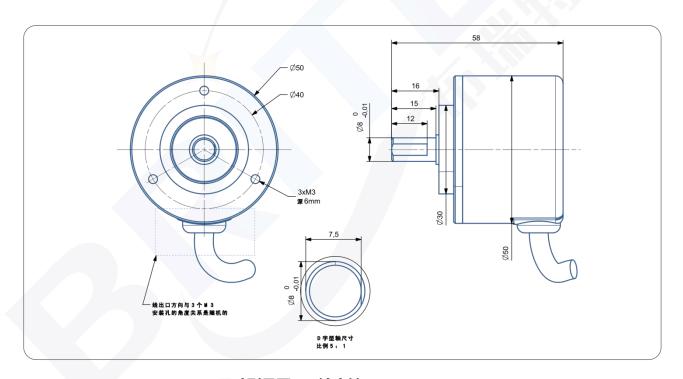
七、机械尺寸


IP54 常规款:

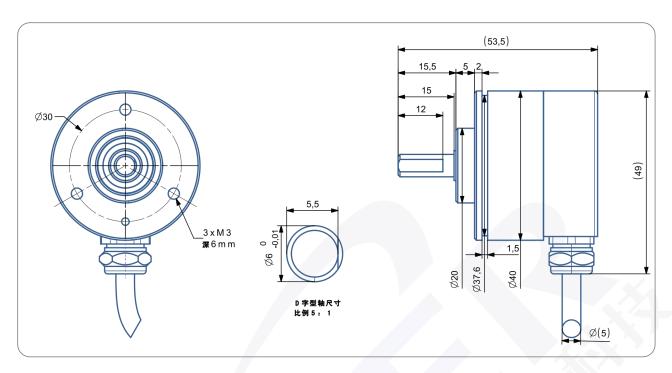

IP68 防水款/Ex 防爆款:



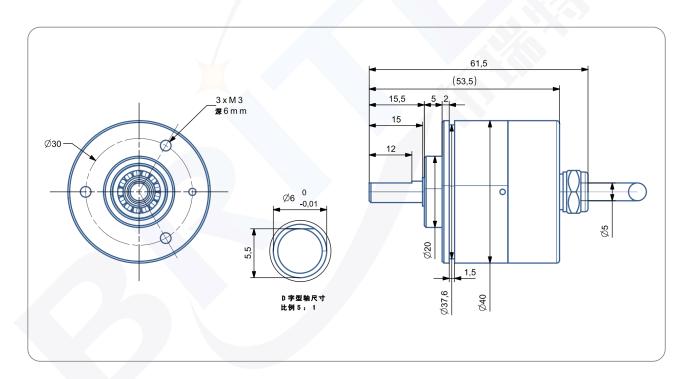
尺寸型号图 1: 输出轴 6mm IP54



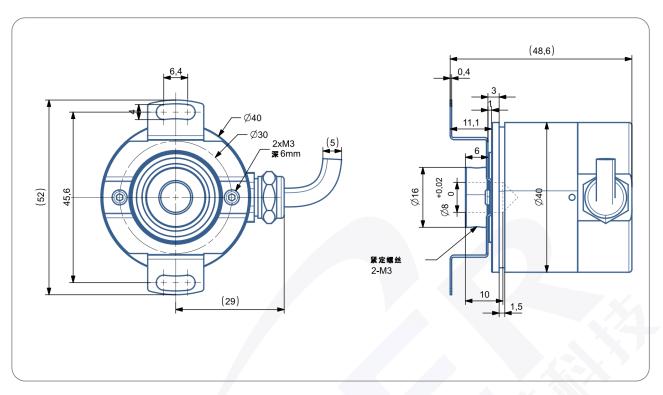
尺寸型号图 2: 输出轴 8mm 盲孔 IP54



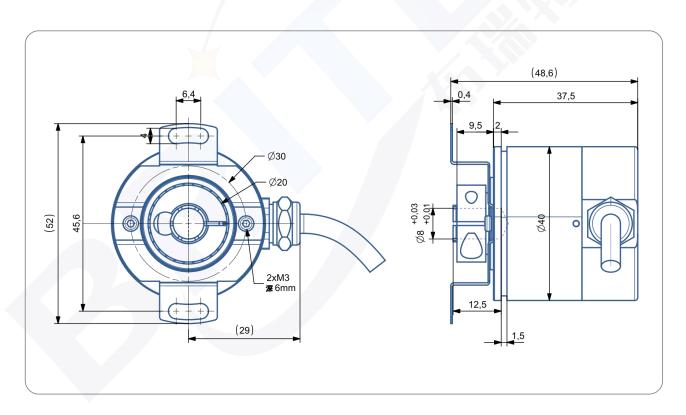
尺寸型号图 3: 输出轴 8mm 抱箍 IP54



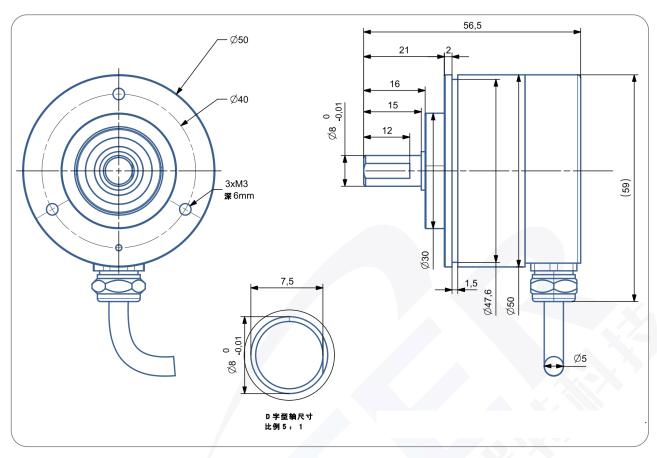
尺寸型号图 4: 输出轴 8mm IP54



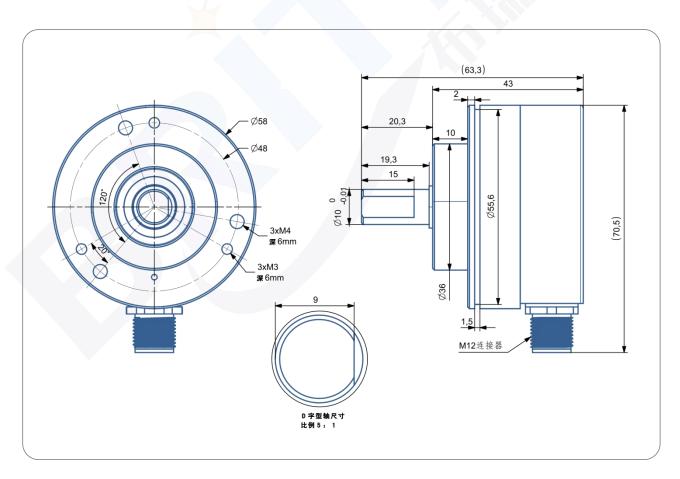
尺寸型号图 5: 输出轴 6mm IP68/防爆



尺寸型号图 6: 输出轴 6mm(尾出) IP68/防爆



尺寸型号图 7: 输出轴 8mm 盲孔 IP68/防爆



尺寸型号图 8: 输出轴 8mm 抱箍 IP68/防爆

尺寸型号图 9: 输出轴 8mm IP68/防爆

尺寸型号图 10: 输出轴 10mm IP68/防爆

八、 通信协议 ////

通信协议详述:

本编码器使用 MODBUS-RTU(国标 GB/T19582-2008)通讯协议进行通讯,支持一主站控制多个从站,通过自带的上位机可以配置 255 个从站地址,主站可以是单片机、PLC 或 PC 机等。

8.1. 通信参数

出厂时的串口默认配置,波特率默认为 9600bps,数据位 8,无校验,停止位 1;波特率可配置范围 9600~115200bps,编码器默认通信地址(站号)为 1。

8.2. MODBUS-RTU 帧格式

本编码器支持 MODBUS 的 0x03(读保持寄存器)、0x06(写单个寄存器)。

8.2.1. 0x03 读保持寄存器

主站发送:

字节	1	2	3	4	5	6	7	8
内容	ADR	0x03	起始寄存 器高字节	起始寄存器 低字节	寄存器数 高字节	寄存器数 低字节	CRC 高字节	CRC 低 字节

第 1 字节 ADR: 从站地址码 (1~255)

第 2 字节 0x03 : 读寄存器值功能码

第 3、4 字节: 要读的寄存器开始地址

第 5、6 字节: 要读的寄存器数量

第 7、8 字节: 从字节 1 到 6 的 CRC16 校验和

从站回送:

字节	1	2	3	4、5	6、7	M-1、M	M+1	M+2
内容	ADR	0x03	字节总数	寄存器数据1	寄存器 数据 2	 寄存器数 据 M	CRC 高 字节	CRC 低 字节

第 1 字节 ADR: 从站地址码 (2~255)

第 2 字节 0x03 : 返回读功能码

第3字节: 从4到M(包括4及M)的字节总数

第 4 ~ M 字节: 寄存器数据

第 M+1、 M+2 字节: 从字节 1 到 M 的 CRC16 校验和

8.2.2. 0x06 写单个寄存器

主站发送:

字节	1	2	3	4	5	6	7	8
中容	ADD	0,06	寄存器高	寄存器	寄存器数高	寄存器数	CRC 高	CRC 低
内容	ADR	0x06	字节	低字节	字节	低字节	字节	字节

当从站接收正确,从站回送:

字节	1	2	3	4	5	6	7	8
内容	ADR	0x06	寄存器高字节	寄存器低字节	寄存器数 高字节	寄存器数 低字节	CRC 高 字节	CRC 低 字节

8.3. 寄存器定义

8.3.1. 编码器寄存器

寄存器地址	描述	取值范围	支持功能码	备注
0x0000~0x0001	编码器值	0~0xFFFFFFF (0~4294967295)	0x03	
0x0002	编码器圈数值	0~0xFFFF (0~65535)	0x03	
0x0003	编码 <mark>器单</mark> 圈值	0~0xFFFF (0~65535)	0x03	
0x0004	编码器地址	1-255	0x06	通信地址
0x0005	波特率	0x0000~0x0004	0x06	0x00: 9600 0x01: 19200 0x02: 38400 0x03: 57600 0x04: 115200
0x0006	编码器模式	0x0000 0x0001 0x0005	0x06	0x00: 查询模式 0x01: 自动回传编码器值 0x05: 自动回传角速度编 码值
0x0007	编码器自动回 传时间	0~65535(毫秒)	0x06	默认:50毫秒 注意:一旦设置自动回传时 间小于20毫秒,编码器再 设置其他参数容易失败,谨 慎使用!!

0x0008	编码器重置 零点标志位	0x0001	0x06	写入 0x0001,编码器以当 前位置为零点
0x0009	编码器值 递增方向	0x0000~0x0001	0x06	0x00:顺时针 0x01:逆时针
0x000A	编码器角速度 采样时间	0~65535(毫秒)	0x06	默认: 100mS
0x000B~0x000C	编码器设置 当前位置值	0~0xFFFFFFF (0~4294967295)	0x10	设置编码器当前位置值
0x000E	编码器设置 中点标志位	0x0001	0x06	写入 0x0001,编码器以当 前位置为中点
0x000F	编码器设置 5 圈标志位	0x0001	0x06	写入 0x0001,编码器以当 前位置为 5 圈值
0x0020~0x0021	编码器角速度 值	-2147483648~214 7483647	0x03	有符号整数
0x0041	模拟量最小值 设置标志位	0x0001	0x06	设置编码器当前角度输出 模拟量信号为最小值
0x0042	模拟量最大值 设置标志位	0x0001	0x06	设置编码器当前角度输出 模拟量信号为最大值
0x0043	模拟量中点值 设置标志位	0x0001	0x06	设置编码器当前角度输出 模拟量信号为中点值

8.4. 编码器详细参数说明

8.4.1. 编码器值值

寄存器地址	0x0000~0x0001	西门子 PLC 地址	40001~40002
数据范围	0~X(X 为单圈分辨率*硬件 圈数-1)	单位	-
默认值	-	读/写	仅读(支持功能码 0x03)
生效方式	-	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有的多圈编码器

编码器当前多圈角度=编码器值*360/单圈分辨率。例如读取编码器值为 95803, 单圈分辨率为 1024(即 10bit, 2^10=1024),编码器当前多圈角度=95803*360/1024=33680.74°

通信示例:

Tx:01 03 00 00 00 02 (C4 0B) Rx:01 03 04 00 01 76 3B (CC 40)

注:括号内为 CRC 校验位,编码器值返回数据是 00 01 76 3B (十进制: 95803)

8.4.2. 编码器圈数值

寄存器地址	0x0002	西门子PLC地址	40003
数据范围	0~Y (硬件圈数-1)	单位	-
默认值	_	读/写	仅读(支持功能码 0x03)
生效方式	-	记忆	掉电记忆
数据类型	无符 号 整数	适用范围	所有多圈编码器

通信示例:

Tx:01 03 00 03 00 01 (74 0A) Rx:01 03 02 02 7A (38 C7)

注:括号内为 CRC 校验位,编码器圈数值返回数据是 00 08 (十进制: 8 圈)

8.4.3. 编码器单圈值

寄存器地址	0x0003	西门子 PLC 地址	40004
数据范围	0~N(N 为单圈分辨率-1)	单位	-
默认值	-	读/写	仅读(支持功能码 0x03)
生效方式	-	记忆	掉电记忆
数据类型	无符 号 整数	适用范围	所有多圈编码器

编码器当前单圈角度=编码器单圈值*360/单圈分辨率。例如读取编码器单圈值为 634, 单圈分辨率为 1024(即 10bit, 2^10=1024),编码器当前角度=634*360/1024=222.89°

通信示例:

Tx:01 03 00 03 00 01 (74 0A) Rx:01 03 04 02 7A (D8 C6)

注:括号内为 CRC 校验位,编码器单圈值返回数据是 02 7A (十进制: 634)

8.4.4. 编码器地址

寄存器地址	0x0004	西门子 PLC 地址	40005
数据范围	1~255	单位	-
默认值	1	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

说明:编码器地址/ID/站号

通信示例:

Tx:01 06 00 04 00 02 (49 CA) Rx:01 06 00 04 00 02 (49 CA)

注:括号内为 CRC 校验位,设定地址是 02 (HEX:0x0002)

8.4.5. 波特率

寄存器地址	0x0005	西门子 PLC 地址	40006
	0~4		
	(0: 9600bps		
*************************************	1: 19200bps	₩ / : :	
数据范围	2: 38400bps	单位	-
	3: 57600bps		
	4: 115200bps)		
默认值	0 (9600bps)	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

通信示例:

Tx:01 06 00 05 00 02 (18 0A) Rx:01 06 00 05 00 02 (18 0A)

注:括号内为 CRC 校验位,设置的波特率为 38400 bps(0x02)

8.4.6. 编码器模式

寄存器地址	0x0006	西门子 PLC 地址	40007
数据范围	0~5 (0x00: 查询模式 0x01: 自动回传编码器值 0x05: 自动回传编码器角速度值)	单位	-
默认值	0 (查询模式)	读/写	仅写 (支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

说明: 编码器工作模式

通信示例:

Tx: 01 06 00 06 00 01 (A8 0B) Rx: 01 06 00 06 00 01 (A8 0B)

注:括号内为 CRC 校验位,设置当前编码器数据模式为自动回传编码器值 (默认查询)

8.4.7. 自动回传时间

寄存器地址	0x0007	西门子 PLC 地址	40008
数据范围	0~65535	单位	mS(毫秒)
默认值	50(mS)	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

说明:编码器自动回传数据的时间周期(需配合编码器自动回传数据模式使用)

通信示例:

Tx: 01 06 00 07 00 64 (39 E0) Rx: 01 06 00 07 00 64 (39 E0)

注:括号内为 CRC 校验位,设定自动回传时间为 100 毫秒 (HEX:0x0064)

特别注意:一旦设置自动回传时间小于20毫秒,编码器再设置其他参数很容易失败,谨慎使用!

8.4.8. 编码器重置零点标志位

寄存器地址	0x0008	西门子 PLC 地址	40009
数据范围	0~1	单位	<u>-</u>
默认值	-	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	-
数据类型	无符号整数	适用范围	所有编码器

说明: 此地址写入1后, 即设置编码器当前位置为零点, 当前编码器值读取为0

通信示例:

Tx:01 06 00 08 00 01 (C9 C8) Rx:01 06 00 08 00 01 (C9 C8)

注:括号内为 CRC 校验位,设置当前编码器值为 0

8.4.9. 编码器值递增方向

寄存器地址	0x0009	西门子 PLC 地址	40010
	0~1		
数据范围	(0: CW 顺时针递增	单位	-
	1:CCW 逆时针递增)		
默认值	1 (CCW 逆时针递增)	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符 号 整数	适用范围	所有编码器

说明: 编码器值递增方向 (编码器输出轴朝向观察者)

通信示例:

Tx:01 06 00 09 00 00 (59 C8) Rx:01 06 00 09 00 00 (59 C8)

注:括号内为 CRC 校验位,设置当前编码器值顺时针数值增加

8.4.10. 编码器角速度采样时间

寄存器地址	0x000A	西门子 PLC 地址	40011
数据范围	0~65535	单位	mS(毫秒)
默认值	100 (mS)	读/写	仅写 (支持功能码 0x06)
生效方式	立即生效	记忆	掉电记忆
数据类型	无符号整数	适用范围	所有编码器

通信示例:

Tx: 01 06 00 0A 03 E8 (A9 76) Rx: 01 06 00 0A 03 E8 (A9 76)

注:括号内为 CRC 校验位,设定自动回传时间为 1000 毫秒 (HEX:0x3E8)

8.4.11. 设置编码器当前值

寄存器地址	0x000B~0x000C	西门子 PLC 地址	40012~40013
数据范围	0~X (X 为单圈分辨率*硬 件圈数-1)	单位	-
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
默认值	-	读/写	仅写 (支持功能码 0x10)
生效方式	立即生效	记忆	-
数据类型	无符号整数	适用范围	所有多圈编码器

通信示例:

Tx:01 10 00 0B 00 02 04 00 00 30 39 (66 0E)

Rx:01 10 00 0B 00 02 (30 0A)

注:括号内为 CRC 校验位,设置的位置为 12345 (HEX:0x00003039)

8.4.12. 编码器设置中点标志位

寄存器地址	0x000E	西门子 PLC 地址	40015
数据范围	0~1	单位	-
默认值	-	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	-
数据类型	无符号整数	适用范围	所有编码器

说明:设定当前编码器值为 M(M 为单圈分辨率*硬件圈数/2)

通信示例:

Tx:01 06 00 0E 00 01 (29 C9)

Rx:01 06 00 0E 00 01 (29 C9)

注:括号内为 CRC 校验位,设置编码器当前位置或角度为量程中点

8.4.13. 编码器设置 5 圈标志位

寄存器地址	0x000F	西门子 PLC 地址	40016
数据范围	0~1	单位	-
默认值	-	读/写	仅写(支持功能码 0x06)
生效方式	立即生效	记忆	-
数据类型	无符号整数	适用范围	所有多圈编码器

说明:设定当前编码器值为 Z(Z 为单圈分辨率*5),例如编码器单圈分辨率为 1024,设置之后,当前编码值为 5*1024=5120。

通信示例:

Tx:01 06 00 0F 00 01 (78 09) Rx:01 06 00 0F 00 01 (78 09)

注:括号内为 CRC 校验位,设置当前编码器值为 5 圈值

8.4.14. 编码器角速度值

寄存器地址	0x00 <mark>20</mark> ~0x0021	西门子 PLC 地址	40033~40034		
数据范围	-2147483648~2147483647	单位	-		
默认值	-	读/写	仅读(支持功能码 0x03)		
生效方式	立即生效	记忆	-		
数据类型	有符号整数	适用范围	所有编码器		

说明:编码器旋转速度 = 编码器角速度值 / 单圈分辨率 / 转速计算时间 (单位:转/分钟)

例如:编码器角速度值回传为 111612, 单圈分辨率为 32768, 转速采样时间为 100ms(0.1/60min)

编码器旋转速度 =111612/32768/(0.1/60) =111612*0.0183 =2042.4996 转/分钟

通信示例:

Tx:01 03 00 20 00 02 (C5 C1)

Rx:01 03 04 00 01 B3 FC (DE 82)

注:括号内为 CRC 校验位,编码器角速度值返回数据是 00 01 B3 FC (十进制: 111612)

8.4.15. 模拟量最小值设置标志位

寄存器地址	0x0041	西门子 PLC 地址	40066	
数据范围	0~1	单位	-	
默认值	-	读/写	仅写(支持功能码 0x06)	
生效方式	立即生效	记忆	-	
数据类型	无符号整数	适用范围	所有模拟量输出编码器	

说明:如编码器为 0~5V 输出类型,则设置后编码器当前角度输出模拟量信号为 0V 如编码器为 0~10V 输出类型,则设置后编码器当前角度输出模拟量信号为 0V 如编码器为 4~20mA 输出类型,则设置后编码器当前角度输出模拟量信号为 4mA 通信示例:

Tx:01 06 00 41 00 01 (18 1E) Rx:01 06 00 41 00 01 (18 1E)

注:括号内为 CRC 校验位,设置当前编码器当前点为最小值

8.4.16. 模拟量最大值设置标志位

寄存器地址	0x0042	西门子 PLC 地址	40067	
数据范围	0~1	单位	-	
默认值	-	读/写	仅写(支持功能码 0x06)	
生效方式	立即生效	记忆	-	
数据类型	无符号整数	适用范围	所有模拟量输出编码器	

说明:如编码器为 0~5V 输出类型,则设置后编码器当前角度输出模拟量信号为 5V 如编码器为 0~10V 输出类型,则设置后编码器当前角度输出模拟量信号为 10V 如编码器为 4~20mA 输出类型,则设置后编码器当前角度输出模拟量信号为 20mA 通信示例:

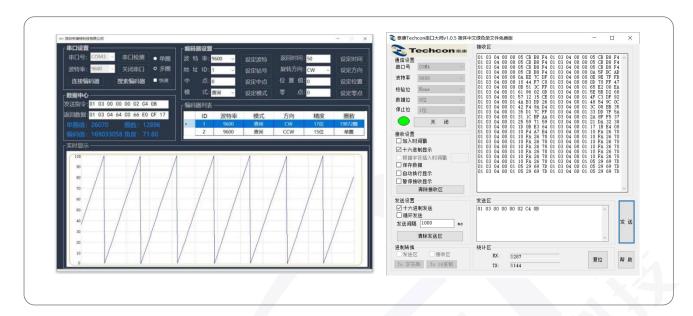
Tx:01 06 00 42 00 01 (E8 1E) Rx:01 06 00 42 00 01 (E8 1E)

注:括号内为 CRC 校验位,设置当前编码器当前点为最大值

8.4.17. 模拟量中值设置标志位

寄存器地址	0x0043	西门子 PLC 地址	40068	
数据范围	0~1	单位	-	
默认值	-	读/写	仅写 (支持功能码 0x06)	
生效方式	立即生效	记忆	-	
数据类型	无符号整数	适用范围	所有模拟量输出编码器	

说明:如编码器为 0~5V 输出类型,则设置后编码器当前角度输出模拟量信号为 2.5V 如编码器为 0~10V 输出类型,则设置后编码器当前角度输出模拟量信号为 5V 如编码器为 4~20mA 输出类型,则设置后编码器当前角度输出模拟量信号为 12mA 通信示例:


Tx:01 06 00 43 00 01 (B9 DE) Rx:01 06 00 43 00 01 (B9 DE) 注:括号内为 CRC 校验位,设置当前编码器当前点为中值

8.5. CRC 校验函数代码参考

```
unsigned int Crc_Count(unsigned char pbuf[],unsigned char num)
{
    int i,j; unsigned int wcrc=0xffff;
    for(i=0;i<num;i++)
    {
      wcrc^=(unsigned int)(pbuf[i]);
      for (j=0;j<8;j++)
      {
         if(wcrc&0x0001)
         {
            wcrc>>=1; wcrc^=0xa001;
         }
         else
            wcrc>>=1;
    }
    }
    return wcrc;
}
```


8.6. 编码器上位机及串口软件测试示例

九、 编码器指示灯说明 ////

9.1 默认由 5 个闪灯状态组成,默认指示状态: "蓝—>蓝—>蓝—> 青—>蓝" 的 1s 慢闪,表示编码器供电正常;

9.2 其他工作状态指示

(1) 设置最小值状态: 橙灯间隔 0.5s 快闪烁;

(2) 设置最大值状态: 紫灯间隔 0.5s 快闪烁;

(3) 设置中点值状态: 橙灯间隔 0.5s 快闪烁;

(4) 上电复位状态: 橙灯间隔 0.5s 快闪烁;

(5) 设置方向状态: 紫灯间隔 0.5s 快闪烁;

9.3 红灯为编码器故障

十、安全要点

- 1. 使用时请不要超过额定电压范围。如施加额定电压以上的电压时,会引起破裂和烧损;
- 2. 高压线和动力线并行连线时, 会因感应而发生误动作或破损, 所以请分开连线;
- 3. 使用电源如发生浪涌,请在电源间接上浪涌吸收器。为了避免干扰,请尽量在短距离之内连线;
- 4. 在接通电源或切断电源时,容易发生错误脉冲,所以请在接通电源1秒后、及切断电源1秒前使用;
- 5. 需注意电源极性等,不能错误连线,以免引起破裂和烧损;
- 6. 注意不能让负载短路, 以免引起破裂和烧损;
- 7. 请不要在可燃性、爆炸性的环境下进行使用;
- 8. 请不要拆卸、修理、改造本产品。

十一、正确使用方法 ////

- 1.旋转式编码器是由紧密部件构成的,因此使用时要非常小心,不能跌落,以免损伤功能;
- 2.使用时请不要让水和油滴落在主体上;
- 3.连线时要在电源切断的状态下进行, 电源 ON 时, 输出线如接触电源, 会引起输出回路破损;
- 4.固定本体、进行导线连线时,请注意导线的拉伸力度不要超过 29.4N;
- 5.请勿往轴上施加过大的载荷,以免引起产品破损,用链条、传送带及齿轮连接时,先通过其他轴承, 再用耦合器与编码器结合;
- 6.如果安装误差大(偏心、偏角),就会有过大的负载加在轴上,从而造成损坏或者缩短其使用年限;
- 7. 当耦合器插入轴时,请不要用锤子敲击等增加撞击力;
- 8.安装、拆卸耦合器时,请勿进行不必要的弯曲、压缩和拉伸。

十二、我们的服务 ////

- ◆ 本公司产品在正常使用(除客户不正当使用或因短接引起的电路永久损坏)情况下,保期2年,免费提供远程技术指导服务,超出质保期限的产品寄回维修仅收取成本人工费用;
- 可开具专票 (13%) 、普票 (1%) ,如需开票请联系业务人员;
- 图纸、位机、通信协议等可在布瑞特科技官网下载: www.buruiter.com, 如需绝对值编码器教学视频可在我公司视频号观看。

十三、定制服务

十四、图纸和模型下载方式 ////

资料下载地址(说明书(含通讯协议)、尺寸图纸、3d 模型、上位机): www.buruiter.com

点击链接进入官网下载中心>>编码器资料,如下图:

BRÍ	TER 布羅特科技	旋转编码器 > 位移传感器 >	行业应用 下载中心 联	系我们 > 【 400-198	35-888 Q
FT - 14					
	· · · · · · · · · · · · · · · · · · ·	/h771 HI 20 *bl	사면사람매장회	1+ 61, 27 wd	
	<产品选型手册>	<编码器资料>	<拉绳传感器资料>	<其他资料>	-
	>> 通讯协议及使	用说明书		~	
	>> 图纸及3D模 型	Ā		~	
	>> 上位机及其他	软件		~	
	>> 其他资料			~	

官网二维码

联系我们

深圳布瑞特科技有限公司官网网址:

www.buruiter.com (扫描上方二维码进入官网)

定制服务:

接口定制,尺寸定制,通讯定制,参数定制

技术支持:

400-1985-888

地址:

深圳市 宝安区 西乡街道 银田工业区 B9 栋 3 层